Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -58,23 +58,37 @@
|
|
58 |
# out=grad.Textbox(lines=1, label="French")
|
59 |
# grad.Interface(translate, inputs=txt, outputs=out).launch()
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
62 |
import gradio as grad
|
63 |
mdl_name = "google/pegasus-xsum"
|
64 |
pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
|
65 |
mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
def summarize(text):
|
71 |
tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
|
72 |
-
|
73 |
-
response = pegasus_tkn.batch_decode(
|
74 |
return response
|
75 |
txt=grad.Textbox(lines=10, label="English", placeholder="English Text here")
|
76 |
out=grad.Textbox(lines=10, label="Summary")
|
77 |
grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
78 |
|
79 |
|
80 |
-
|
|
|
58 |
# out=grad.Textbox(lines=1, label="French")
|
59 |
# grad.Interface(translate, inputs=txt, outputs=out).launch()
|
60 |
|
61 |
+
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
62 |
+
# import gradio as grad
|
63 |
+
# mdl_name = "google/pegasus-xsum"
|
64 |
+
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
|
65 |
+
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
# def summarize(text):
|
71 |
+
# tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
|
72 |
+
# txt_summary = mdl.generate(**tokens)
|
73 |
+
# response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True)
|
74 |
+
# return response
|
75 |
+
# txt=grad.Textbox(lines=10, label="English", placeholder="English Text here")
|
76 |
+
# out=grad.Textbox(lines=10, label="Summary")
|
77 |
+
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
78 |
+
|
79 |
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
80 |
import gradio as grad
|
81 |
mdl_name = "google/pegasus-xsum"
|
82 |
pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
|
83 |
mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
|
84 |
|
|
|
|
|
|
|
85 |
def summarize(text):
|
86 |
tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
|
87 |
+
translated_txt = mdl.generate(**tokens,num_return_sequences=5,max_length=200,temperature=1.5,num_beams=10)
|
88 |
+
response = pegasus_tkn.batch_decode(translated_txt, skip_special_tokens=True)
|
89 |
return response
|
90 |
txt=grad.Textbox(lines=10, label="English", placeholder="English Text here")
|
91 |
out=grad.Textbox(lines=10, label="Summary")
|
92 |
grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
93 |
|
94 |
|
|