# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline # import gradio as grad # import ast # # mdl_name = "deepset/roberta-base-squad2" # mdl_name = "distilbert-base-cased-distilled-squad" # my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name) # def answer_question(question,context): # text= "{"+"'question': '"+question+"','context': '"+context+"'}" # di=ast.literal_eval(text) # response = my_pipeline(di) # return response # grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch() from transformers import pipeline import gradio as grad mdl_name = "Helsinki-NLP/opus-mt-en-de" opus_translator = pipeline("translation", model=mdl_name) def translate(text): response = opus_translator(text) return response grad.Interface(translate, inputs=["text",], outputs="text").launch()