Upload 9 files
Browse files- README.md +1 -1
- app.py +25 -4
- cat.jpg +0 -0
- persimmon.jpg +0 -0
- persimmontree.jpg +0 -0
- requirements.txt +1 -0
- tomato.jpg +0 -0
- tomatoplant.jpg +0 -0
- tomatoplant2.jpg +0 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Persimmon
|
3 |
emoji: 🐢
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
|
|
1 |
---
|
2 |
+
title: Persimmon or Tomato?
|
3 |
emoji: 🐢
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
app.py
CHANGED
@@ -1,7 +1,28 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
def
|
4 |
-
return "Howdy " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.vision.all import *
|
2 |
import gradio as gr
|
3 |
|
4 |
+
#def is_cat(x): return x[0].isupper()
|
|
|
5 |
|
6 |
+
# Cell
|
7 |
+
learn = load_learner('persimmon_model.pkl')
|
8 |
+
|
9 |
+
# Cell
|
10 |
+
categories = ('persimmon', 'tomato')
|
11 |
+
|
12 |
+
def classify_image(img):
|
13 |
+
pred,idx,probs = learn.predict(img)
|
14 |
+
return dict(zip(categories, map(float,probs)))
|
15 |
+
|
16 |
+
image = gr.inputs.Image(shape=(192, 192))
|
17 |
+
label = gr.outputs.Label()
|
18 |
+
examples = ['persimmon.jpg', 'tomato.jpg', 'persimmontree.jpg',
|
19 |
+
'tomatoplant.jpg', 'cat.jpg', 'tomatoplant2.jpg']
|
20 |
+
|
21 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
22 |
+
intf.launch(inline=False)
|
23 |
+
|
24 |
+
#def greet(name):
|
25 |
+
# return "Howdy " + name + "!!"
|
26 |
+
|
27 |
+
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
28 |
+
#iface.launch()
|
cat.jpg
ADDED
![]() |
persimmon.jpg
ADDED
![]() |
persimmontree.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
fastai
|
tomato.jpg
ADDED
![]() |
tomatoplant.jpg
ADDED
![]() |
tomatoplant2.jpg
ADDED
![]() |