File size: 10,745 Bytes
09a6f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/**
 * @classdesc Class that handles the water dynamics.
 */
class WaterDynamics {
    constructor(gravity, drag_mod=0.25, lift_mod=0.25, push_mod=0.05,
                max_drag=2000, max_lift=500, max_push=13){
        this.gravity = gravity;
        this.drag_mod = drag_mod;
        this.lift_mod = lift_mod;
        this.max_drag = max_drag;
        this.max_lift = max_lift;
        this.push_mod = push_mod;
        this.max_push = max_push;
    }

    compute_centroids(vectors){
        let count = vectors.length;
        console.assert(count >= 3);

        let c = new b2.Vec2(0, 0);
        let area = 0;
        let ref_point = new b2.Vec2(0, 0);
        let inv3 = 1/3;

        for(let i = 0; i < count; i++){
            // Triangle vertices
            let p1 = ref_point;
            let p2 = vectors[i];
            let p3 = i + 1 < count ? vectors[i + 1] : vectors[0];

            let e1 = b2.Vec2.Subtract(p2, p1);
            let e2 = b2.Vec2.Subtract(p3, p1);
            let d = b2.Cross_v2_v2(e1, e2);
            let triangle_area = 0.5 * d;
            area += triangle_area;

            // Area weighted centroid
            c.Add(b2.Vec2.Multiply(triangle_area * inv3, b2.Vec2.Add(p1, b2.Vec2.Add(p2, p3))));
        }

        if(area > b2.epsilon){
            c.Multiply(1/area);
        }
        else{
            area = 0;
        }

        return [c, area];
    }

    inside(cp1, cp2, p){
        return (cp2.x - cp1.x) * (p.y - cp1.y) > (cp2.y - cp1.y) * (p.x - cp1.x);
    }

    intersection(cp1, cp2, s, e){
        let dc = new b2.Vec2(cp1.x - cp2.x, cp1.y - cp2.y);
        let dp = new b2.Vec2(s.x - e.x, s.y - e.y);
        let n1 = cp1.x * cp2.y - cp1.y * cp2.x;
        let n2 = s.x * e.y - s.y * e.x;
        let n3 = 1.0 / (dc.x * dp.y - dc.y * dp.x);
        return new b2.Vec2((n1 * dp.x - n2 * dc.x) * n3, (n1 * dp.y - n2 * dc.y) * n3);
    }

    find_intersection(fixture_A, fixture_B){
        // TODO : assert polygons
        let output_vertices = [];
        let polygon_A = fixture_A.GetShape();
        let polygon_B = fixture_B.GetShape();

        // fill 'subject polygon' from fixture_A polygon
        for(let i = 0; i < polygon_A.m_count; i++){
            output_vertices.push(fixture_A.GetBody().GetWorldPoint(polygon_A.m_vertices[i]));
        }

        // fill 'clip polygon' from fixture_B polygon
        let clip_polygon = [];
        for(let i = 0; i < polygon_B.m_count; i++){
            clip_polygon.push(fixture_B.GetBody().GetWorldPoint(polygon_B.m_vertices[i]));
        }

        let cp1 = clip_polygon[clip_polygon.length - 1];
        for(let j = 0; j < clip_polygon.length; j++){
            let cp2 = clip_polygon[j];
            if(output_vertices.length == 0){
                break;
            }
            let input_list = output_vertices.slice();
            output_vertices = [];

            let s = input_list[input_list.length - 1];
            for(let i = 0; i < input_list.length; i++){
                let e = input_list[i];
                if(this.inside(cp1, cp2, e)){
                    if(!this.inside(cp1, cp2, s)){
                        output_vertices.push(this.intersection(cp1, cp2, s, e));
                    }
                    output_vertices.push(e);
                }
                else if(this.inside(cp1, cp2, s)){
                    output_vertices.push(this.intersection(cp1, cp2, s, e));
                }
                s = e;
            }
            cp1 = cp2
        }
        return [(output_vertices.length != 0), output_vertices];
    }

    calculate_forces(fixture_pairs){
        for(let pair of fixture_pairs){
            let density = pair[0].GetDensity();
            let [has_intersection, intersection_points] = this.find_intersection(pair[0], pair[1]);
            if(has_intersection){
                let [centroid, area] = this.compute_centroids(intersection_points);

                // apply buoyancy force
                let displaced_mass = pair[0].GetDensity() * area;
                let buoyancy_force = b2.Vec2.Multiply(displaced_mass, b2.Vec2.Negate(this.gravity));
                pair[1].GetBody().ApplyForce(buoyancy_force, centroid, true);

                // apply complex drag
                for(let i = 0; i < intersection_points.length; i++) {
                    let v0 = intersection_points[i];
                    let v1 = intersection_points[(i + 1) % intersection_points.length];
                    let mid_point = b2.Vec2.Multiply(0.5, b2.Vec2.Add(v0, v1));

                    // DRAG
                    // find relative velocity between object and fluid at edge midpoint
                    let vel_dir = b2.Vec2.Subtract(pair[1].GetBody().GetLinearVelocityFromWorldPoint(mid_point),
                                                    pair[0].GetBody().GetLinearVelocityFromWorldPoint(mid_point));
                    let vel = vel_dir.Normalize();

                    let edge = b2.Vec2.Subtract(v1, v0);
                    let edge_length = edge.Normalize();
                    let normal = b2.Cross_f_v2(-1, edge);
                    let drag_dot = b2.Dot_v2_v2(normal, vel_dir);
                    if(drag_dot >= 0){ // normal points backwards - this is not a leading edge
                        // apply drag
                        let drag_mag = drag_dot * this.drag_mod * edge_length * density * vel * vel;
                        drag_mag = Math.min(drag_mag, this.max_drag);
                        let drag_force = b2.Vec2.Multiply(drag_mag, b2.Vec2.Negate(vel_dir));
                        pair[1].GetBody().ApplyForce(drag_force, mid_point, true);

                        // apply lift
                        let lift_dot = b2.Dot_v2_v2(edge, vel_dir);
                        let lift_mag = drag_dot * lift_dot * this.lift_mod * edge_length * density * vel * vel;
                        lift_mag = Math.min(lift_mag, this.max_lift);
                        let lift_dir = b2.Cross_f_v2(1, vel_dir);
                        let lift_force = b2.Vec2.Multiply(lift_mag, lift_dir);
                        pair[1].GetBody().ApplyForce(lift_force, mid_point, true);
                    }

                    // PUSH
                    let body_to_check = pair[1].GetBody();
                    // Simplification /!\
                    let joints_to_check = [];
                    let joint_edge = body_to_check.GetJointList();
                    while(joint_edge != null){
                        if(joint_edge.joint.GetBodyB() == body_to_check){
                            joints_to_check.push(joint_edge.joint);
                        }
                        joint_edge = joint_edge.next;
                    }

                    for(let joint of joints_to_check){
                        if(joint.GetLowerLimit() < joint.GetJointAngle() && joint.GetJointAngle() < joint.GetUpperLimit()){
                            let torque = joint.GetMotorTorque(60);

                            // Calculate angular inertia of the object
                            let moment_of_inertia = body_to_check.GetInertia();
                            let angular_velocity = body_to_check.GetAngularVelocity();
                            let angular_inertia = moment_of_inertia * angular_velocity;

                            // Calculate the force applied to the object
                            let world_center = body_to_check.GetWorldCenter();
                            let anchor = joint.GetAnchorB();
                            let lever_vector = b2.Vec2.Subtract(world_center, anchor); // vector from pivot to point of application of the force
                            let force_applied_at_center = b2.Cross_v2_f(lever_vector, -torque);

                            let push_dot = b2.Dot_v2_v2(normal, force_applied_at_center);
                            if(push_dot > 0){
                                vel = torque + angular_inertia;
                                // Wrong approximation /!\
                                let push_mag = push_dot * this.push_mod * edge_length * density * vel * vel;
                                let force = b2.Vec2.Multiply(push_mag, b2.Vec2.Negate(force_applied_at_center));
                                let clip_force_x = Math.max(-this.max_push, Math.min(force.x, this.max_push));
                                let clip_force_y = Math.max(-this.max_push, Math.min(force.y, this.max_push))
                                let push_force =  new b2.Vec2(clip_force_x, clip_force_y);
                                body_to_check.ApplyForce(push_force, joint.GetAnchorB(), true);
                            }
                        }
                    }

                }

            }

        }
    }
}

/**
 * @classdesc Stores fixtures of objects in contact with water.
 * @constructor
 */
function WaterContactDetector() {
    b2.ContactListener.call(this);
    this.fixture_pairs = [];
}

WaterContactDetector.prototype = Object.create(b2.ContactListener.prototype);
WaterContactDetector.prototype.constructor = WaterContactDetector;
WaterContactDetector.prototype.BeginContact = function (contact){
    if(contact.GetFixtureA().GetBody().GetUserData().object_type == CustomUserDataObjectTypes.WATER
        && contact.GetFixtureB().GetBody().GetUserData().object_type == CustomUserDataObjectTypes.BODY_OBJECT){
        this.fixture_pairs.push([contact.GetFixtureA(), contact.GetFixtureB()]);
    }
    else if(contact.GetFixtureB().GetBody().GetUserData().object_type == CustomUserDataObjectTypes.WATER
        && contact.GetFixtureA().GetBody().GetUserData().object_type == CustomUserDataObjectTypes.BODY_OBJECT){
        this.fixture_pairs.push([contact.GetFixtureB(), contact.GetFixtureA()]);
    }
};

WaterContactDetector.prototype.EndContact = function (contact) {
    if(contact.GetFixtureA().GetBody().GetUserData().object_type == CustomUserDataObjectTypes.WATER
        && contact.GetFixtureB().GetBody().GetUserData().object_type == CustomUserDataObjectTypes.BODY_OBJECT){
        let index = this.fixture_pairs.indexOf([contact.GetFixtureA(), contact.GetFixtureB()]);
        if (index !== -1) {
            this.fixture_pairs.splice(index, 1);
        }
    }
    else if(contact.GetFixtureB().GetBody().GetUserData().object_type == CustomUserDataObjectTypes.WATER
        && contact.GetFixtureA().GetBody().GetUserData().object_type == CustomUserDataObjectTypes.BODY_OBJECT){
        let index = this.fixture_pairs.indexOf([contact.GetFixtureB(), contact.GetFixtureA()]);
        if (index !== -1) {
            this.fixture_pairs.splice(index, 1);
        }
    }
};

WaterContactDetector.prototype.Reset = function (){
    this.fixture_pairs = [];
};