Spaces:
Sleeping
Sleeping
File size: 20,604 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
# python -m scripts.LLM_test --gif test_GPT_boxes --episodes 1 --max-steps 8 --model text-davinci-003 --env-args size 6 --env-name SocialAI-ColorBoxesLLMCSParamEnv-v1 --in-context-path llm_data/in_context_color_boxes.txt
# python -m scripts.LLM_test --gif test_GPT_asoc --episodes 1 --max-steps 8 --model text-ada-001 --env-args size 6 --env-name SocialAI-AsocialBoxInformationSeekingParamEnv-v1 --in-context-path llm_data/in_context_asocial_box.txt --feed-full-ep
# python -m scripts.LLM_test --gif test_GPT_boxes --episodes 1 --max-steps 8 --model bloom_560m --env-args size 6 --env-name SocialAI-ColorBoxesLLMCSParamEnv-v1 --in-context-path llm_data/in_context_color_boxes.txt
# python -m scripts.LLM_test --gif test_GPT_asoc --episodes 1 --max-steps 8 --model bloom_560m --env-args size 6 --env-name SocialAI-AsocialBoxInformationSeekingParamEnv-v1 --in-context-path llm_data/in_context_asocial_box.txt --feed-full-ep
## bloom 560m
# boxes
# python -m scripts.LLM_test --log llm_log/bloom_560m_boxes_no_hist --gif evaluation --episodes 20 --max-steps 10 --model bloom_560m --env-args size 6 --env-name SocialAI-ColorBoxesLLMCSParamEnv-v1 --in-context-path llm_data/in_context_color_boxes.txt
# asocial
# python -m scripts.LLM_test --log llm_log/bloom_560m_asocial_no_hist --gif evaluation --episodes 20 --max-steps 10 --model bloom_560m --env-args size 6 --env-name SocialAI-AsocialBoxInformationSeekingParamEnv-v1 --in-context-path llm_data/in_context_asocial_box.txt
# random
# python -m scripts.LLM_test --log llm_log/random_boxes --gif evaluation --episodes 20 --max-steps 10 --model random --env-args size 6 --env-name SocialAI-ColorBoxesLLMCSParamEnv-v1 --in-context-path llm_data/in_context_color_boxes.txt
import argparse
import json
import requests
import time
import warnings
from n_tokens import estimate_price
import numpy as np
import torch
from pathlib import Path
from utils.babyai_utils.baby_agent import load_agent
from utils import *
from models import *
import subprocess
import os
from matplotlib import pyplot as plt
from gym_minigrid.wrappers import *
from gym_minigrid.window import Window
from datetime import datetime
from imageio import mimsave
def prompt_preprocessor(llm_prompt):
# remove peer observations
lines = llm_prompt.split("\n")
new_lines = []
for line in lines:
if line.startswith("#"):
continue
elif line.startswith("Conversation"):
continue
elif "peer" in line:
caretaker = True
if caretaker:
# show only the location of the caretaker
# this is very ugly, todo: refactor this
assert "there is a" in line
start_index = line.index('there is a') + 11
new_line = line[:start_index] + 'caretaker'
new_lines.append(new_line)
else:
# no caretaker at all
if line.startswith("Obs :") and "peer" in line:
# remove only the peer descriptions
line = "Obs :"
new_lines.append(line)
else:
assert "peer" in line
elif "Caretaker:" in line:
# line = line.replace("Caretaker:", "Caretaker says: '") + "'"
new_lines.append(line)
else:
new_lines.append(line)
return "\n".join(new_lines)
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=False,
help="text-ada-001")
parser.add_argument("--seed", type=int, default=0,
help="Seed of the first episode. The seed for the following episodes will be used in order: seed, seed + 1, ... seed + (n_episodes-1) (default: 0)")
parser.add_argument("--max-steps", type=int, default=5,
help="max num of steps")
parser.add_argument("--shift", type=int, default=0,
help="number of times the environment is reset at the beginning (default: 0)")
parser.add_argument("--argmax", action="store_true", default=False,
help="select the action with highest probability (default: False)")
parser.add_argument("--pause", type=float, default=0.5,
help="pause duration between two consequent actions of the agent (default: 0.5)")
parser.add_argument("--env-name", type=str,
# default="SocialAI-ELangColorBoxesTestInformationSeekingParamEnv-v1",
# default="SocialAI-AsocialBoxInformationSeekingParamEnv-v1",
default="SocialAI-ColorBoxesLLMCSParamEnv-v1",
required=False,
help="env name")
parser.add_argument("--in-context-path", type=str,
# default='llm_data/short_in_context_boxes.txt'
# default='llm_data/in_context_asocial_box.txt'
default='llm_data/in_context_color_boxes.txt',
required=False,
help="path to in context examples")
parser.add_argument("--gif", type=str, default="visualization",
help="store output as gif with the given filename", required=False)
parser.add_argument("--episodes", type=int, default=1,
help="number of episodes to visualize")
parser.add_argument("--env-args", nargs='*', default=None)
parser.add_argument("--agent_view", default=False, help="draw the agent sees (partially observable view)", action='store_true' )
parser.add_argument("--tile_size", type=int, help="size at which to render tiles", default=32 )
parser.add_argument("--mask-unobserved", default=False, help="mask cells that are not observed by the agent", action='store_true' )
parser.add_argument("--log", type=str, default="llm_log/episodes_log", help="log from the run", required=False)
parser.add_argument("--feed-full-ep", default=False, help="weather to append the whole episode to the prompt", action='store_true')
parser.add_argument("--skip-check", default=False, help="Don't estimate the price.", action="store_true")
args = parser.parse_args()
# Set seed for all randomness sources
seed(args.seed)
model = args.model
in_context_examples_path = args.in_context_path
print("env name:", args.env_name)
print("examples:", in_context_examples_path)
print("model:", args.model)
# datetime
now = datetime.now()
datetime_string = now.strftime("%d_%m_%Y_%H:%M:%S")
print(datetime_string)
# log filenames
log_folder = args.log+"_"+datetime_string+"/"
os.mkdir(log_folder)
evaluation_log_filename = log_folder+"evaluation_log.json"
prompt_log_filename = log_folder + "prompt_log.txt"
ep_h_log_filename = log_folder+"episode_history_query.txt"
gif_savename = log_folder + args.gif + ".gif"
assert "viz" not in gif_savename # don't use viz anymore
env_args = env_args_str_to_dict(args.env_args)
env = make_env(args.env_name, args.seed, env_args)
# env = gym.make(args.env_name, **env_args)
print(f"Environment {args.env_name} and args: {env_args_str_to_dict(args.env_args)}\n")
# Define agent
print("Agent loaded\n")
# prepare models
if args.model in ["text-davinci-003", "text-ada-001", "gpt-3.5-turbo-0301"]:
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
elif args.model in ["gpt2_large", "api_bloom"]:
HF_TOKEN = os.getenv("HF_TOKEN")
elif args.model in ["bloom_560m"]:
from transformers import BloomForCausalLM
from transformers import BloomTokenizerFast
hf_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
hf_model = BloomForCausalLM.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
elif args.model in ["bloom"]:
from transformers import BloomForCausalLM
from transformers import BloomTokenizerFast
hf_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom", cache_dir=".cache/huggingface/")
hf_model = BloomForCausalLM.from_pretrained("bigscience/bloom", cache_dir=".cache/huggingface/")
def plt_2_rgb(env):
# data = np.frombuffer(env.window.fig.canvas.tostring_rgb(), dtype=np.uint8)
# data = data.reshape(env.window.fig.canvas.get_width_height()[::-1] + (3,))
width, height = env.window.fig.get_size_inches() * env.window.fig.get_dpi()
data = np.fromstring(env.window.fig.canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
return data
def generate(text_input, model):
# return "(a) move forward"
if model == "dummy":
print("dummy action forward")
return "move forward"
elif model == "random":
print("random agent")
return random.choice([
"move forward",
"turn left",
"turn right",
"toggle",
])
elif model in ["gpt-3.5-turbo-0301"]:
while True:
try:
c = openai.ChatCompletion.create(
model=model,
messages=[
# {"role": "system", "content": ""},
# {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
# {"role": "user", "content": "Continue the following text in the most logical way.\n"+text_input}
{"role": "user", "content": text_input}
],
max_tokens=3,
n=1,
temperature=0,
request_timeout=30,
)
break
except Exception as e:
print(e)
print("Pausing")
time.sleep(10)
continue
print("generation: ", c['choices'][0]['message']['content'])
return c['choices'][0]['message']['content']
elif model in ["text-davinci-003", "text-ada-001"]:
while True:
try:
response = openai.Completion.create(
model=model,
prompt=text_input,
# temperature=0.7,
temperature=0.0,
max_tokens=3,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
timeout=30
)
break
except Exception as e:
print(e)
print("Pausing")
time.sleep(10)
continue
choices = response["choices"]
assert len(choices) == 1
return choices[0]["text"].strip().lower() # remove newline from the end
elif model in ["gpt2_large", "api_bloom"]:
# HF_TOKEN = os.getenv("HF_TOKEN")
if model == "gpt2_large":
API_URL = "https://api-inference.huggingface.co/models/gpt2-large"
elif model == "api_bloom":
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
else:
raise ValueError(f"Undefined model {model}.")
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def query(text_prompt, n_tokens=3):
input = text_prompt
# make n_tokens request and append the output each time - one request generates one token
for _ in range(n_tokens):
# prepare request
payload = {
"inputs": input,
"parameters": {
"do_sample": False,
'temperature': 0,
'wait_for_model': True,
# "max_length": 500, # for gpt2
# "max_new_tokens": 250 # fot gpt2-xl
},
}
data = json.dumps(payload)
# request
response = requests.request("POST", API_URL, headers=headers, data=data)
response_json = json.loads(response.content.decode("utf-8"))
if type(response_json) is list and len(response_json) == 1:
# generated_text contains the input + the response
response_full_text = response_json[0]['generated_text']
# we use this as the next input
input = response_full_text
else:
print("Invalid request to huggingface api")
from IPython import embed; embed()
# remove the prompt from the beginning
assert response_full_text.startswith(text_prompt)
response_text = response_full_text[len(text_prompt):]
return response_text
response = query(text_input).strip().lower()
return response
elif model in ["bloom_560m"]:
# from transformers import BloomForCausalLM
# from transformers import BloomTokenizerFast
#
# tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
# model = BloomForCausalLM.from_pretrained("bigscience/bloom-560m", cache_dir=".cache/huggingface/")
inputs = hf_tokenizer(text_input, return_tensors="pt")
# 3 words
result_length = inputs['input_ids'].shape[-1]+3
full_output = hf_tokenizer.decode(hf_model.generate(inputs["input_ids"], max_length=result_length)[0])
assert full_output.startswith(text_input)
response = full_output[len(text_input):]
response = response.strip().lower()
return response
else:
raise ValueError("Unknown model.")
def get_parsed_action(text_action):
if "move forward" in text_action:
return "move forward"
elif "turn left" in text_action:
return "turn left"
elif "turn right" in text_action:
return "turn right"
elif "toggle" in text_action:
return "toggle"
elif "no_op" in text_action:
return "no_op"
else:
warnings.warn(f"Undefined action {text_action}")
return "no_op"
def step(text_action):
text_action = get_parsed_action(text_action)
if "move forward" == text_action:
action = [int(env.actions.forward), np.nan, np.nan]
elif "turn left" == text_action:
action = [int(env.actions.left), np.nan, np.nan]
elif "turn right" == text_action:
action = [int(env.actions.right), np.nan, np.nan]
elif "toggle" == text_action:
action = [int(env.actions.toggle), np.nan, np.nan]
elif "no_op" == text_action:
action = [np.nan, np.nan, np.nan]
# if text_action.startswith("a"):
# action = [int(env.actions.forward), np.nan, np.nan]
#
# elif text_action.startswith("b"):
# action = [int(env.actions.left), np.nan, np.nan]
#
# elif text_action.startswith("c"):
# action = [int(env.actions.right), np.nan, np.nan]
#
# elif text_action.startswith("d"):
# action = [int(env.actions.toggle), np.nan, np.nan]
#
# elif text_action.startswith("e"):
# action = [np.nan, np.nan, np.nan]
#
# else:
# print("Unknown action.")
obs, reward, done, info = env.step(action)
return obs, reward, done, info
def reset(env):
env.reset()
# a dirty trick just to get obs and info
return step("no_op")
def generate_text_obs(obs, info):
llm_prompt = "Obs : "
llm_prompt += "".join(info["descriptions"])
if obs["utterance_history"] != "Conversation: \n":
utt_hist = obs['utterance_history']
utt_hist = utt_hist.replace("Conversation: \n","")
llm_prompt += utt_hist
return llm_prompt
def action_query():
# llm_prompt = ""
# llm_prompt += "Your possible actions are:\n"
# llm_prompt += "(a) move forward\n"
# llm_prompt += "(b) turn left\n"
# llm_prompt += "(c) turn right\n"
# llm_prompt += "(d) toggle\n"
# llm_prompt += "(e) no_op\n"
# llm_prompt += "Your next action is: ("
llm_prompt = "Act :"
return llm_prompt
# lod context examples
with open(in_context_examples_path, "r") as f:
in_context_examples = f.read()
with open(prompt_log_filename, "a+") as f:
f.write(datetime_string)
with open(ep_h_log_filename, "a+") as f:
f.write(datetime_string)
feed_episode_history = args.feed_full_ep
# asoc
in_context_n_tokens = 800
ep_obs_len = 50 * 3
# color
in_context_n_tokens = 1434
# ep_obs_len = 70
# feed only current obs
if feed_episode_history:
ep_obs_len = 50
else:
# last_n = 1
# last_n = 2
last_n = 3
ep_obs_len = 50 * last_n
_, price = estimate_price(
num_of_episodes=args.episodes,
in_context_len=in_context_n_tokens,
ep_obs_len=ep_obs_len,
n_steps=args.max_steps,
model=args.model,
feed_episode_history=feed_episode_history
)
if not args.skip_check:
input(f"You will spend: {price} dollars. (in context: {in_context_n_tokens} obs: {ep_obs_len}), ok?")
# prepare frames list to save to gif
frames = []
assert args.max_steps <= 20
success_rates = []
# episodes start
for episode in range(args.episodes):
print("Episode:", episode)
new_episode_text = "New episode.\n"
episode_history_text = new_episode_text
success = False
episode_seed = args.seed + episode
env = make_env(args.env_name, episode_seed, env_args)
with open(prompt_log_filename, "a+") as f:
f.write("\n\n")
observations = []
actions = []
for i in range(int(args.max_steps)):
if i == 0:
obs, reward, done, info = reset(env)
action_text = ""
else:
with open(prompt_log_filename, "a+") as f:
f.write("\nnew prompt: -----------------------------------\n")
f.write(llm_prompt)
text_action = generate(llm_prompt, args.model)
obs, reward, done, info = step(text_action)
action_text = f"Act : {get_parsed_action(text_action)}\n"
actions.append(action_text)
print(action_text)
text_obs = generate_text_obs(obs, info)
observations.append(text_obs)
print(prompt_preprocessor(text_obs))
# feed the full episode history
episode_history_text += prompt_preprocessor(action_text + text_obs) # append to history of this episode
if feed_episode_history:
# feed full episode history
llm_prompt = in_context_examples + episode_history_text + action_query()
else:
n = min(last_n, len(observations))
obs = observations[-n:]
act = (actions + [action_query()])[-n:]
episode_text = "".join([o+a for o,a in zip(obs, act)])
llm_prompt = in_context_examples + new_episode_text + episode_text
llm_prompt = prompt_preprocessor(llm_prompt)
# save the image
env.render(mode="human")
rgb_img = plt_2_rgb(env)
frames.append(rgb_img)
if env.current_env.box.blocked and not env.current_env.box.is_open:
# target box is blocked -> apple can't be obtained
# break to save compute
break
if done:
# quadruple last frame to pause between episodes
for i in range(3):
same_img = np.copy(rgb_img)
# toggle a pixel between frames to avoid cropping when going from gif to mp4
same_img[0, 0, 2] = 0 if (i % 2) == 0 else 255
frames.append(same_img)
if reward > 0:
print("Success!")
episode_history_text += "Success!\n"
success = True
else:
episode_history_text += "Failure!\n"
with open(ep_h_log_filename, "a+") as f:
f.write("\nnew prompt: -----------------------------------\n")
f.write(episode_history_text)
break
else:
with open(ep_h_log_filename, "a+") as f:
f.write("\nnew prompt: -----------------------------------\n")
f.write(episode_history_text)
print(f"{'Success' if success else 'Failure'}")
success_rates.append(success)
mean_success_rate = np.mean(success_rates)
print("Success rate:", mean_success_rate)
print(f"Saving gif to {gif_savename}.")
mimsave(gif_savename, frames, duration=args.pause)
print("Done.")
log_data_dict = vars(args)
log_data_dict["success_rates"] = success_rates
log_data_dict["mean_success_rate"] = mean_success_rate
print("Evaluation log: ", evaluation_log_filename)
with open(evaluation_log_filename, "w") as f:
f.write(json.dumps(log_data_dict))
|