grg's picture
Cleaned old git history
be5548b
raw
history blame
10.4 kB
import math
import operator
from functools import reduce
import numpy as np
import gym
from gym import error, spaces, utils
from .minigrid import OBJECT_TO_IDX, COLOR_TO_IDX, STATE_TO_IDX
class ReseedWrapper(gym.core.Wrapper):
"""
Wrapper to always regenerate an environment with the same set of seeds.
This can be used to force an environment to always keep the same
configuration when reset.
"""
def __init__(self, env, seeds=[0], seed_idx=0):
self.seeds = list(seeds)
self.seed_idx = seed_idx
super().__init__(env)
def reset(self, **kwargs):
seed = self.seeds[self.seed_idx]
self.seed_idx = (self.seed_idx + 1) % len(self.seeds)
self.env.seed(seed)
return self.env.reset(**kwargs)
def step(self, action):
obs, reward, done, info = self.env.step(action)
return obs, reward, done, info
class ActionBonus(gym.core.Wrapper):
"""
Wrapper which adds an exploration bonus.
This is a reward to encourage exploration of less
visited (state,action) pairs.
"""
def __init__(self, env):
super().__init__(env)
self.counts = {}
def step(self, action):
obs, reward, done, info = self.env.step(action)
env = self.unwrapped
tup = (tuple(env.agent_pos), env.agent_dir, action)
# Get the count for this (s,a) pair
pre_count = 0
if tup in self.counts:
pre_count = self.counts[tup]
# Update the count for this (s,a) pair
new_count = pre_count + 1
self.counts[tup] = new_count
bonus = 1 / math.sqrt(new_count)
reward += bonus
return obs, reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class StateBonus(gym.core.Wrapper):
"""
Adds an exploration bonus based on which positions
are visited on the grid.
"""
def __init__(self, env):
super().__init__(env)
self.counts = {}
def step(self, action):
obs, reward, done, info = self.env.step(action)
# Tuple based on which we index the counts
# We use the position after an update
env = self.unwrapped
tup = (tuple(env.agent_pos))
# Get the count for this key
pre_count = 0
if tup in self.counts:
pre_count = self.counts[tup]
# Update the count for this key
new_count = pre_count + 1
self.counts[tup] = new_count
bonus = 1 / math.sqrt(new_count)
reward += bonus
return obs, reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class ImgObsWrapper(gym.core.ObservationWrapper):
"""
Use the image as the only observation output, no language/mission.
"""
def __init__(self, env):
super().__init__(env)
self.observation_space = env.observation_space.spaces['image']
def observation(self, obs):
return obs['image']
class OneHotPartialObsWrapper(gym.core.ObservationWrapper):
"""
Wrapper to get a one-hot encoding of a partially observable
agent view as observation.
"""
def __init__(self, env, tile_size=8):
super().__init__(env)
self.tile_size = tile_size
obs_shape = env.observation_space['image'].shape
# Number of bits per cell
num_bits = len(OBJECT_TO_IDX) + len(COLOR_TO_IDX) + len(STATE_TO_IDX)
self.observation_space.spaces["image"] = spaces.Box(
low=0,
high=255,
shape=(obs_shape[0], obs_shape[1], num_bits),
dtype='uint8'
)
def observation(self, obs):
img = obs['image']
out = np.zeros(self.observation_space.spaces['image'].shape, dtype='uint8')
for i in range(img.shape[0]):
for j in range(img.shape[1]):
type = img[i, j, 0]
color = img[i, j, 1]
state = img[i, j, 2]
out[i, j, type] = 1
out[i, j, len(OBJECT_TO_IDX) + color] = 1
out[i, j, len(OBJECT_TO_IDX) + len(COLOR_TO_IDX) + state] = 1
return {
'mission': obs['mission'],
'image': out
}
class RGBImgObsWrapper(gym.core.ObservationWrapper):
"""
Wrapper to use fully observable RGB image as the only observation output,
no language/mission. This can be used to have the agent to solve the
gridworld in pixel space.
"""
def __init__(self, env, tile_size=8):
super().__init__(env)
self.tile_size = tile_size
self.observation_space.spaces['image'] = spaces.Box(
low=0,
high=255,
shape=(self.env.width * tile_size, self.env.height * tile_size, 3),
dtype='uint8'
)
def observation(self, obs):
env = self.unwrapped
rgb_img = env.render(
mode='rgb_array',
highlight=False,
tile_size=self.tile_size
)
return {
'mission': obs['mission'],
'image': rgb_img
}
class RGBImgPartialObsWrapper(gym.core.ObservationWrapper):
"""
Wrapper to use partially observable RGB image as the only observation output
This can be used to have the agent to solve the gridworld in pixel space.
"""
def __init__(self, env, tile_size=8):
super().__init__(env)
self.tile_size = tile_size
obs_shape = env.observation_space.spaces['image'].shape
self.observation_space.spaces['image'] = spaces.Box(
low=0,
high=255,
shape=(obs_shape[0] * tile_size, obs_shape[1] * tile_size, 3),
dtype='uint8'
)
def observation(self, obs):
env = self.unwrapped
rgb_img_partial = env.get_obs_render(
obs['image'],
tile_size=self.tile_size
)
return {
'mission': obs['mission'],
'image': rgb_img_partial
}
class FullyObsWrapper(gym.core.ObservationWrapper):
"""
Fully observable gridworld using a compact grid encoding
"""
def __init__(self, env):
super().__init__(env)
self.observation_space.spaces["image"] = spaces.Box(
low=0,
high=255,
shape=(self.env.width, self.env.height, 3), # number of cells
dtype='uint8'
)
def observation(self, obs):
env = self.unwrapped
full_grid = env.grid.encode()
full_grid[env.agent_pos[0]][env.agent_pos[1]] = np.array([
OBJECT_TO_IDX['agent'],
COLOR_TO_IDX['red'],
env.agent_dir
])
return {
'mission': obs['mission'],
'image': full_grid
}
class FlatObsWrapper(gym.core.ObservationWrapper):
"""
Encode mission strings using a one-hot scheme,
and combine these with observed images into one flat array
"""
def __init__(self, env, maxStrLen=96):
super().__init__(env)
self.maxStrLen = maxStrLen
self.numCharCodes = 27
imgSpace = env.observation_space.spaces['image']
imgSize = reduce(operator.mul, imgSpace.shape, 1)
self.observation_space = spaces.Box(
low=0,
high=255,
shape=(imgSize + self.numCharCodes * self.maxStrLen,),
dtype='uint8'
)
self.cachedStr = None
self.cachedArray = None
def observation(self, obs):
image = obs['image']
mission = obs['mission']
# Cache the last-encoded mission string
if mission != self.cachedStr:
assert len(mission) <= self.maxStrLen, 'mission string too long ({} chars)'.format(len(mission))
mission = mission.lower()
strArray = np.zeros(shape=(self.maxStrLen, self.numCharCodes), dtype='float32')
for idx, ch in enumerate(mission):
if ch >= 'a' and ch <= 'z':
chNo = ord(ch) - ord('a')
elif ch == ' ':
chNo = ord('z') - ord('a') + 1
assert chNo < self.numCharCodes, '%s : %d' % (ch, chNo)
strArray[idx, chNo] = 1
self.cachedStr = mission
self.cachedArray = strArray
obs = np.concatenate((image.flatten(), self.cachedArray.flatten()))
return obs
class ViewSizeWrapper(gym.core.Wrapper):
"""
Wrapper to customize the agent field of view size.
This cannot be used with fully observable wrappers.
"""
def __init__(self, env, agent_view_size=7):
super().__init__(env)
assert agent_view_size % 2 == 1
assert agent_view_size >= 3
# Override default view size
env.unwrapped.agent_view_size = agent_view_size
# Compute observation space with specified view size
observation_space = gym.spaces.Box(
low=0,
high=255,
shape=(agent_view_size, agent_view_size, 3),
dtype='uint8'
)
# Override the environment's observation space
self.observation_space = spaces.Dict({
'image': observation_space
})
def reset(self, **kwargs):
return self.env.reset(**kwargs)
def step(self, action):
return self.env.step(action)
from .minigrid import Goal
class DirectionObsWrapper(gym.core.ObservationWrapper):
"""
Provides the slope/angular direction to the goal with the observations as modeled by (y2 - y2 )/( x2 - x1)
type = {slope , angle}
"""
def __init__(self, env,type='slope'):
super().__init__(env)
self.goal_position = None
self.type = type
def reset(self):
obs = self.env.reset()
if not self.goal_position:
self.goal_position = [x for x,y in enumerate(self.grid.grid) if isinstance(y,(Goal) ) ]
if len(self.goal_position) >= 1: # in case there are multiple goals , needs to be handled for other env types
self.goal_position = (int(self.goal_position[0]/self.height) , self.goal_position[0]%self.width)
return obs
def observation(self, obs):
slope = np.divide( self.goal_position[1] - self.agent_pos[1] , self.goal_position[0] - self.agent_pos[0])
obs['goal_direction'] = np.arctan( slope ) if self.type == 'angle' else slope
return obs