added description
Browse files
app.py
CHANGED
@@ -92,14 +92,19 @@ Best results are obtained using one of these sentences, which were used during t
|
|
92 |
\n\n
|
93 |
When the binarize option is turned off, model will output propabilities of requested {class} for each patch. When binarize option is turned on
|
94 |
the model will binarize each propability based on set eval_threshold.
|
|
|
|
|
|
|
|
|
|
|
95 |
"""
|
96 |
demo = gr.Interface(
|
97 |
query_image,
|
98 |
#inputs=[gr.Image(), "text", "checkbox", gr.Slider(0, 1, value=0.25)],
|
99 |
-
inputs=[gr.Image(type='numpy', label='input_img').style(height=
|
100 |
-
gr.Radio(["center", "squash", "border"], value='center', label='crop_mode'), gr.Slider(0.7, 1, value=
|
101 |
#outputs="image",
|
102 |
-
outputs=gr.Image(type='numpy', label='output').style(height=
|
103 |
title="Object Detection Using Textual Queries",
|
104 |
description=description,
|
105 |
examples=[
|
|
|
92 |
\n\n
|
93 |
When the binarize option is turned off, model will output propabilities of requested {class} for each patch. When binarize option is turned on
|
94 |
the model will binarize each propability based on set eval_threshold.
|
95 |
+
\n\n
|
96 |
+
Each input image is transformed to size 224x224 so it can be processed by ViT. During this transformation, different
|
97 |
+
crop_modes and crop_percentage can be selected. The model was trained using crop_mode='center', crop_pct = 0.9.
|
98 |
+
For explanation of different crop_modes, please refer to
|
99 |
+
<a href="https://github.com/huggingface/pytorch-image-models/blob/main/timm/data/transforms_factory.py">this</a> website, lines 155-172.
|
100 |
"""
|
101 |
demo = gr.Interface(
|
102 |
query_image,
|
103 |
#inputs=[gr.Image(), "text", "checkbox", gr.Slider(0, 1, value=0.25)],
|
104 |
+
inputs=[gr.Image(type='numpy', label='input_img').style(height=196, width=600), "text", "checkbox", gr.Slider(0, 1, value=0.25),
|
105 |
+
gr.Radio(["center", "squash", "border"], value='center', label='crop_mode'), gr.Slider(0.7, 1, value=0.9)],
|
106 |
#outputs="image",
|
107 |
+
outputs=gr.Image(type='numpy', label='output').style(height=600, width=600),
|
108 |
title="Object Detection Using Textual Queries",
|
109 |
description=description,
|
110 |
examples=[
|