fmajer commited on
Commit
8d279ae
·
1 Parent(s): c9830ba

added options

Browse files
Files changed (1) hide show
  1. app.py +10 -5
app.py CHANGED
@@ -34,12 +34,16 @@ model.load_state_dict(state['val_model_dict'])
34
  config = resolve_data_config({}, model=vit)
35
  config['no_aug'] = True
36
  config['interpolation'] = 'bilinear'
37
- config['crop_pct'] = 1
38
- config['crop_mode'] = 'border'
39
- transform = create_transform(**config)
40
 
41
  # Inference function
42
- def query_image(input_img, query, binarize, eval_threshold):
 
 
 
 
 
 
 
43
 
44
  PIL_image = Image.fromarray(input_img, "RGB")
45
  img = transform(PIL_image)
@@ -92,7 +96,8 @@ the model will binarize each propability based on set eval_threshold.
92
  demo = gr.Interface(
93
  query_image,
94
  #inputs=[gr.Image(), "text", "checkbox", gr.Slider(0, 1, value=0.25)],
95
- inputs=[gr.Image(type='numpy', label='input_img').style(height=340, width=600), "text", "checkbox", gr.Slider(0, 1, value=0.25)],
 
96
  #outputs="image",
97
  outputs=gr.Image(type='numpy', label='output').style(height=600, width=600),
98
  title="Object Detection Using Textual Queries",
 
34
  config = resolve_data_config({}, model=vit)
35
  config['no_aug'] = True
36
  config['interpolation'] = 'bilinear'
 
 
 
37
 
38
  # Inference function
39
+ def query_image(input_img, query, binarize, eval_threshold, crop_mode, crop_pct):
40
+
41
+ if crop_mode == 'center':
42
+ crop_mode = None
43
+
44
+ config['crop_pct'] = crop_pct
45
+ config['crop_mode'] = crop_mode
46
+ transform = create_transform(**config)
47
 
48
  PIL_image = Image.fromarray(input_img, "RGB")
49
  img = transform(PIL_image)
 
96
  demo = gr.Interface(
97
  query_image,
98
  #inputs=[gr.Image(), "text", "checkbox", gr.Slider(0, 1, value=0.25)],
99
+ inputs=[gr.Image(type='numpy', label='input_img').style(height=270, width=600), "text", "checkbox", gr.Slider(0, 1, value=0.25),
100
+ gr.inputs.Dropdown("center", "squash", "border", label='crop_mode'), gr.Slider(0, 1, value=1)],
101
  #outputs="image",
102
  outputs=gr.Image(type='numpy', label='output').style(height=600, width=600),
103
  title="Object Detection Using Textual Queries",