File size: 9,192 Bytes
6e991d4
 
 
 
 
 
 
 
 
 
c21f511
 
 
 
 
6e991d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import pandas as pd
import jinja2

from pycaret.classification import *
import imblearn as im
import sklearn

import gradio as gr
import numpy as np

ex_data = pd.read_csv('example_data.csv')
ex_data = ex_data.to_numpy()
ex_data = ex_data.tolist()


def predict(age, female, race, elective, aweekend, zipinc_qrtl, hosp_region, hosp_division, hosp_locteach,
            hosp_bedsize, h_contrl, pay, anemia, atrial_fibrillation, 
            cancer, cardiac_arrhythmias, carotid_artery_disease, 
            chronic_kidney_disease, chronic_pulmonary_disease, coagulopathy,
            depression, diabetes_mellitus, drug_abuse, dyslipidemia, endocarditis,
            family_history, fluid_and_electrolyte_disorder, heart_failure,
            hypertension, known_cad, liver_disease, obesity, peripheral_vascular_disease,
            prior_cabg, prior_icd, prior_mi, prior_pci, prior_ppm, prior_tia_stroke,
            pulmonary_circulation_disorder, smoker, valvular_disease, weight_loss,
            endovascular_tavr, transapical_tavr):
  
  model = load_model('final_model')

  df = pd.DataFrame.from_dict({
      'age': [age], 'female': [female], 'race': [race], 'elective': elective,
       'aweekend': [aweekend], 'zipinc_qrtl': [zipinc_qrtl], 
       'hosp_region': [hosp_region], 'hosp_division': [hosp_division],
       'hosp_locteach': [hosp_locteach], 'hosp_bedsize': [hosp_bedsize],
       'h_contrl': [h_contrl], 'pay': [pay], 'anemia': [anemia], 
       'atrial_fibrillation': [atrial_fibrillation], 'cancer': [cancer],
       'cardiac_arrhythmias': [cardiac_arrhythmias], 
       'carotid_artery_disease': [carotid_artery_disease], 
       'chronic_kidney_disease': [chronic_kidney_disease], 
       'chronic_pulmonary_disease': [chronic_pulmonary_disease], 
       'coagulopathy': [coagulopathy], 'depression': [depression],
       'diabetes_mellitus': [diabetes_mellitus], 'drug_abuse': [drug_abuse], 
       'dyslipidemia': [dyslipidemia], 'endocarditis': [endocarditis],
       'family_history': [family_history], 'fluid_and_electrolyte_disorder': [fluid_and_electrolyte_disorder],
       'heart_failure': [heart_failure], 'hypertension': [hypertension],
       'known_cad': [known_cad], 'liver_disease': [liver_disease],
       'obesity': [obesity], 'peripheral_vascular_disease': [peripheral_vascular_disease],
       'prior_cabg': [prior_cabg], 'prior_icd': [prior_icd], 'prior_mi': [prior_mi],
       'prior_pci': [prior_pci], 'prior_ppm': [prior_ppm], 'prior_tia_stroke': [prior_tia_stroke],
       'pulmonary_circulation_disorder': [pulmonary_circulation_disorder], 
       'smoker': [smoker], 'valvular_disease': [valvular_disease],
       'weight_loss': [weight_loss], 'endovascular_tavr': [endovascular_tavr],
       'transapical_tavr': [transapical_tavr]
  })
  
  df.loc[:, df.dtypes == 'object'] =\
    df.select_dtypes(['object'])\
    .apply(lambda x: x.astype('category'))

  # converting ordinal column to ordinal
  df.zipinc_qrtl = df.zipinc_qrtl.astype(ordinal_cat)

  pred = predict_model(model, df, raw_score=True)

  return {'Death %': round(100*pred['Score_Yes'][0], 2),
       'Survival %': round(100*pred['Score_No'][0], 2),
       'Predicting Death Outcome:': pred['Label'][0]}

# Defining the containers for each input
age = gr.inputs.Slider(minimum=0, maximum=100, default=60, label="Age")
female = gr.inputs.Dropdown(choices=["Female", "Male"],label = 'Sex')
race = gr.inputs.Dropdown(choices=['Asian or Pacific Islander', 'Black', 'Hispanic', 'Native American', 'White',  'Other'], label = 'Race')
elective = gr.inputs.Radio(choices=['Elective', 'NonElective'], label = 'Elective')
aweekend = gr.inputs.Radio(choices=["No", "Yes"], label = 'Weekend')
zipinc_qrtl = gr.inputs.Radio(choices=['FirstQ', 'SecondQ', 'ThirdQ', 'FourthQ'], label = 'Zip Income Quartile')
hosp_region = gr.inputs.Radio(choices=['Midwest', 'Northeast', 'South', 'West'], label = 'Hospital Region')
hosp_division = gr.inputs.Radio(choices=['New England', 'Middle Atlantic', 'East North Central', 'West North Central', 'South Atlantic', 'East South Central', 'West South Central', 'Mountain', 'Pacific'], label = 'Hospital Division')
hosp_locteach = gr.inputs.Radio(choices=['Urban teaching', 'Urban nonteaching', 'Rural'], label= 'Hospital Location/Teaching')
hosp_bedsize = gr.inputs.Radio(choices=['Small', 'Medium', 'Large'], label= 'Hospital Bedsize')
h_contrl = gr.inputs.Radio(choices= ['Government_nonfederal', 'Private_invest_own', 'Private_not_profit'], label = 'Hospital Control')
pay = gr.inputs.Dropdown(choices= ['Private insurance', 'Medicare', 'Medicaid',  'Self-pay', 'No charge', 'Other'], label = 'Payee')
anemia = gr.inputs.Radio(choices=["No", "Yes"], label = 'Anemia')
atrial_fibrillation = gr.inputs.Radio(choices=["No", "Yes"], label = 'Atrial Fibrillation')
cancer = gr.inputs.Radio(choices=["No", "Yes"], label = 'Cancer')
cardiac_arrhythmias = gr.inputs.Radio(choices=["No", "Yes"], label = 'Cardiac Arrhythmias')
carotid_artery_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Carotid Artery Disease') 
chronic_kidney_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Chronic Kidney Disease')
chronic_pulmonary_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Chronic Pulmonary Disease') 
coagulopathy =  gr.inputs.Radio(choices=["No", "Yes"], label = 'Coagulopathy')
depression = gr.inputs.Radio(choices=["No", "Yes"], label = 'Depression')
diabetes_mellitus = gr.inputs.Radio(choices=["No", "Yes"], label = 'Diabetes Mellitus')
drug_abuse = gr.inputs.Radio(choices=["No", "Yes"], label = 'Drug Abuse')
dyslipidemia = gr.inputs.Radio(choices=["No", "Yes"], label = 'Dyslipidemia')
endocarditis = gr.inputs.Radio(choices=["No", "Yes"], label = 'Endocarditis')
family_history = gr.inputs.Radio(choices=["No", "Yes"], label = 'Family History')
fluid_and_electrolyte_disorder = gr.inputs.Radio(choices=["No", "Yes"], label = 'Fluid and Electrolyte Disorder')
heart_failure = gr.inputs.Radio(choices=["No", "Yes"], label = 'Heart Failure')
hypertension = gr.inputs.Radio(choices=["No", "Yes"], label = 'Hypertension')
known_cad = gr.inputs.Radio(choices=["No", "Yes"], label = 'Known CAD')
liver_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Liver Disease')
obesity = gr.inputs.Radio(choices=["No", "Yes"], label = 'Obesity')
peripheral_vascular_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Peripheral Vascular Disease')
prior_cabg = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior CABG')
prior_icd = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior ICD')
prior_mi = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior MI')
prior_pci = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior PCI') 
prior_ppm = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior PPM')
prior_tia_stroke = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior TIA Stroke')
pulmonary_circulation_disorder = gr.inputs.Radio(choices=["No", "Yes"], label = 'Pulmonary Circulation Disorder') 
smoker = gr.inputs.Radio(choices=["No", "Yes"], label = 'Smoker')
valvular_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Valvular Disease') 
weight_loss = gr.inputs.Radio(choices=["No", "Yes"], label = 'Weight Loss')
endovascular_tavr = gr.inputs.Radio(choices=["No", "Yes"], label = 'Endovascular TAVR')
transapical_tavr = gr.inputs.Radio(choices=["No", "Yes"], label = 'Transapical TAVR', default= 'Yes')


# Defining and launching the interface
gr.Interface(predict, [age, female, race, elective, aweekend, zipinc_qrtl, hosp_region, hosp_division, hosp_locteach,
            hosp_bedsize, h_contrl, pay, anemia, atrial_fibrillation, 
            cancer, cardiac_arrhythmias, carotid_artery_disease, 
            chronic_kidney_disease, chronic_pulmonary_disease, coagulopathy,
            depression, diabetes_mellitus, drug_abuse, dyslipidemia, endocarditis,
            family_history, fluid_and_electrolyte_disorder, heart_failure,
            hypertension, known_cad, liver_disease, obesity, peripheral_vascular_disease,
            prior_cabg, prior_icd, prior_mi, prior_pci, prior_ppm, prior_tia_stroke,
            pulmonary_circulation_disorder, smoker, valvular_disease, weight_loss,
            endovascular_tavr, transapical_tavr], 
            outputs = gr.Textbox(label="Predicted Outcomes for this Patient", lines=4),
            live=True,
            title = "Predicting In-Hospital Mortality After TAVR Using Preoperative Variables and Penalized Logistic Regression",
            description = "The app below utilizes the finalized logistic regression model with an l2 penalty based on the manuscript by Alhwiti et al. The manuscript will be submitted to JACC: Cardiovascular Interventions. The data used for model building is all TAVR procedures between 2012 and 2019 as reported in the HCUP NIS database. <br><br> The purpose of the app is to provide evidence-based clinical support for interventional cardiology. <br> <br> For instruction on how to use the app and the encoding required for the variables,  please see <b>XYZ: insert website link here</b>.",
            examples = ex_data, 
            css = 'https://bootswatch.com/5/journal/bootstrap.css').launch(debug = False);