Spaces:
Runtime error
Runtime error
File size: 5,780 Bytes
934ba8d 7701eda 2910a31 e245c57 7701eda c6caac4 934ba8d 7701eda 934ba8d c6caac4 934ba8d c6caac4 934ba8d c6caac4 934ba8d c6caac4 934ba8d c6caac4 934ba8d 7701eda c6caac4 934ba8d df1acda 934ba8d c6caac4 e920a86 c6caac4 934ba8d c6caac4 e920a86 c6caac4 e920a86 c6caac4 e920a86 934ba8d c6caac4 934ba8d c6caac4 d3e4173 934ba8d 7701eda c6caac4 934ba8d 39bdbb6 df1acda 934ba8d 7701eda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import cv2
import requests
import os
from ultralyticsplus import YOLO, render_result
# Model Heading and Description
model_heading = "CandleStickScan: Pattern Recognition for Trading Success"
description = """ π―οΈ Introducing CandleStickScan by Foduu AI π―οΈ
Unleash the power of precise pattern recognition with CandleStickScan, your ultimate companion for deciphering intricate candlestick formations in the world of trading. ππ
Unlock the secrets of successful trading by effortlessly identifying crucial candlestick patterns such as 'Head and Shoulders Bottom', 'Head and Shoulders Top', 'M-Head', 'StockLine', 'Triangle', and 'W-Bottom'. ππ
Powered by the cutting-edge technology of Foduu AI, CandleScan is your expert guide to navigating the complexities of the market. Whether you're an experienced trader or a novice investor, our app empowers you to make informed decisions with confidence. πΌπ°
But that's not all! CandleScan is just the beginning. If you're hungry for more pattern recognition prowess, simply reach out to us at info@foddu.com. Our dedicated team is ready to assist you in expanding your trading horizons by integrating additional pattern recognition features. π¬π²
Show your appreciation for this space-age tool by hitting the 'Like' button and start embarking on a journey towards trading mastery with CandleScan! ππ―οΈπ
π§ Contact us: info@foddu.com
π Like | """
image_path= [['test/test1.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45], ['test/test2.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]]
# Load YOLO model
model = YOLO('foduucom/stockmarket-pattern-detection-yolov8')
#############################################################Image Inference############################################################
def yolov8_img_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv8 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = YOLO(model_path)
model.overrides['conf'] = conf_threshold
model.overrides['iou']= iou_threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000
image = read_image(image)
results = model.predict(image)
render = render_result(model=model, image=image, result=results[0])
return render
inputs_image = [
gr.inputs.Image(type="filepath", label="Input Image"),
gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"],
default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs_image =gr.outputs.Image(type="filepath", label="Output Image")
interface_image = gr.Interface(
fn=yolov8_img_inference,
inputs=inputs_image,
outputs=outputs_image,
title=model_heading,
description=description,
examples=image_path,
cache_examples=False,
theme='huggingface'
)
##################################################Video Inference################################################################
def show_preds_video(
video_path: str = None,
model_path: str = None,
image_size: int = 640,
conf_threshold: float = 0.25,
iou_threshold: float = 0.45,
):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
success, frame = cap.read()
if success:
model = YOLO(model_path)
model.overrides['conf'] = conf_threshold
model.overrides['iou'] = iou_threshold
model.overrides['agnostic_nms'] = False
model.overrides['max_det'] = 1000
results = model.predict(frame)
annotated_frame = results[0].plot()
# Do not display the frame using cv2.imshow
# cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
break
cap.release()
cv2.destroyAllWindows()
inputs_video = [
gr.components.Video(type="filepath", label="Input Video"),
gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"],
default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs_video = gr.outputs.Image(type="filepath", label="Output Video")
video_path=[['test/testvideo.mp4','foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]]
interface_video = gr.Interface(
fn=show_preds_video,
inputs=inputs_video,
outputs=outputs_video,
title=model_heading,
description=description,
examples=video_path,
cache_examples=False,
theme='huggingface'
)
gr.TabbedInterface(
[interface_image, interface_video],
tab_names=['Image inference', 'Video inference']
).queue().launch()
|