Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
from ultralyticsplus import YOLO, render_result | |
file_urls = [ | |
'https://huggingface.co/spaces/foduucom/CandleStickScan-Stock-trading-yolov8/resolve/main/test/-2022-06-28-12-35-50_png.rf.8dee4bb645ea8b5036721b830d2636b1.jpg', | |
'https://huggingface.co/spaces/foduucom/CandleStickScan-Stock-trading-yolov8/resolve/main/test/-2022-06-28-12-45-10_png.rf.8b9177546e62a2422ad603b16f1f50b9.jpg', | |
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1' | |
] | |
description=""" π―οΈ Introducing CandleScan by Foduu AI π―οΈ | |
Unleash the power of precise pattern recognition with CandleScan, your ultimate companion for deciphering intricate candlestick formations in the world of trading. ππ | |
Unlock the secrets of successful trading by effortlessly identifying crucial candlestick patterns such as 'Head and Shoulders Bottom', 'Head and Shoulders Top', 'M-Head', 'StockLine', 'Triangle', and 'W-Bottom'. ππ | |
Powered by the cutting-edge technology of Foduu AI, CandleScan is your expert guide to navigating the complexities of the market. Whether you're an experienced trader or a novice investor, our app empowers you to make informed decisions with confidence. πΌπ° | |
But that's not all! CandleScan is just the beginning. If you're hungry for more pattern recognition prowess, simply reach out to us at info@foddu.com. Our dedicated team is ready to assist you in expanding your trading horizons by integrating additional pattern recognition features. π¬π² | |
Show your appreciation for this space-age tool by hitting the 'Like' button and start embarking on a journey towards trading mastery with CandleScan! ππ―οΈπ | |
π§ Contact us: info@foddu.com | |
π Like | """ | |
def download_file(url, save_name): | |
url = url | |
if not os.path.exists(save_name): | |
file = requests.get(url) | |
open(save_name, 'wb').write(file.content) | |
for i, url in enumerate(file_urls): | |
if 'mp4' in file_urls[i]: | |
download_file( | |
file_urls[i], | |
f"video.mp4" | |
) | |
# else: | |
# download_file( | |
# file_urls[i], | |
# f"image_{i}.jpg" | |
# ) | |
model = YOLO('foduucom/stockmarket-pattern-detection-yolov8') | |
path = [['test/test1.jpg'], ['test/test2.jpg']] | |
video_path = [['video.mp4']] | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
] | |
outputs_image = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="CandleStickScan: Pattern Recognition for Trading Success", | |
descripiton=description, | |
examples=path, | |
cache_examples=False, | |
) | |
def show_preds_video(video_path): | |
cap = cv2.VideoCapture(video_path) | |
while(cap.isOpened()): | |
ret, frame = cap.read() | |
if ret: | |
frame_copy = frame.copy() | |
outputs = model.predict(source=frame) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
cv2.rectangle( | |
frame_copy, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
inputs_video = [ | |
gr.components.Video(type="filepath", label="Input Video"), | |
] | |
outputs_video = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_video = gr.Interface( | |
fn=show_preds_video, | |
inputs=inputs_video, | |
outputs=outputs_video, | |
title="CandleStickScan: Pattern Recognition for Trading Success", | |
descripiton=description, | |
examples=video_path, | |
cache_examples=False, | |
) | |
gr.TabbedInterface( | |
[interface_image, interface_video], | |
tab_names=['Image inference', 'Video inference'] | |
).queue().launch() |