import gradio as gr import cv2 import requests import os from ultralyticsplus import YOLO, render_result # Model Heading and Description model_heading = "CandleStickScan: Pattern Recognition for Trading Success" description = """ πŸ•―οΈ Light up your trading game with CandleStickScan! We decode candlestick mysteries like trading Sherlock! πŸ•΅οΈβ€β™‚οΈ From 'Head and Shoulders' to 'W-Bottom', we've got patterns covered. Powered by Foduu AI's magic, we'll be your trading Gandalf. Whether you're a trading guru or just starting, we've got your back. πŸ’ΌπŸ’° πŸ“ˆ Trading with CandleScan is like having a secret trading sauce. Curious? Reach out at info@foddu.com and unveil the magic! Liking us won't give you superpowers, but it's a step towards trading wizardry! πŸš€πŸ‘πŸ•―οΈ πŸ“§ Contact us: info@foddu.com πŸ‘ Like | Join the Trading Adventure!""" image_path= [['test/test1.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45], ['test/test2.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]] # Load YOLO model model = YOLO('foduucom/stockmarket-pattern-detection-yolov8') #############################################################Image Inference############################################################ def yolov8_img_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = YOLO(model_path) model.overrides['conf'] = conf_threshold model.overrides['iou']= iou_threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # image = read_image(image) results = model.predict(image) render = render_result(model=model, image=image, result=results[0]) return render inputs_image = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"], default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs_image =gr.outputs.Image(type="filepath", label="Output Image") interface_image = gr.Interface( fn=yolov8_img_inference, inputs=inputs_image, outputs=outputs_image, title=model_heading, description=description, examples=image_path, cache_examples=False, theme='huggingface' ) ##################################################Video Inference################################################################ def show_preds_video( video_path: str = None, model_path: str = None, image_size: int = 640, conf_threshold: float = 0.25, iou_threshold: float = 0.45, ): cap = cv2.VideoCapture(video_path) while cap.isOpened(): success, frame = cap.read() if success: model = YOLO(model_path) model.overrides['conf'] = conf_threshold model.overrides['iou'] = iou_threshold model.overrides['agnostic_nms'] = False model.overrides['max_det'] = 1000 results = model.predict(frame) annotated_frame = results[0].plot() # Do not display the frame using cv2.imshow # cv2.imshow("YOLOv8 Inference", annotated_frame) # Break the loop if 'q' is pressed if cv2.waitKey(1) & 0xFF == ord("q"): break else: break cap.release() cv2.destroyAllWindows() inputs_video = [ gr.components.Video(type="filepath", label="Input Video"), gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"], default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs_video = gr.outputs.Image(type="filepath", label="Output Video") video_path=[['test/testvideo.mp4','foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]] interface_video = gr.Interface( fn=show_preds_video, inputs=inputs_video, outputs=outputs_video, title=model_heading, description=description, examples=video_path, cache_examples=False, theme='huggingface' ) gr.TabbedInterface( [interface_image, interface_video], tab_names=['Image inference', 'Video inference'] ).queue().launch()