nehulagrawal's picture
Update app.py
e56e1a2
import gradio as gr
import torch
from sahi.prediction import ObjectPrediction
from sahi.utils.cv import visualize_object_predictions, read_image
from ultralyticsplus import YOLO, render_result
def yolov8_inference(
image: gr.Image = None,
model_path: gr.Dropdown = None,
image_size: gr.Slider = 640,
conf_threshold: gr.Slider = 0.25,
iou_threshold: gr.Slider = 0.45,
):
"""
YOLOv8 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = YOLO(model_path)
model.overrides['conf'] = conf_threshold
model.overrides['iou']= iou_threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000
image = read_image(image)
results = model.predict(image)
render = render_result(model=model, image=image, result=results[0])
return render
inputs = [
gr.Image(type="filepath", label="Input Image"),
gr.Dropdown(["foduucom/thermal-image-object-detection"],
default="foduucom/thermal-image-object-detection", label="Model"),
gr.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.Image(type="filepath", label="Output Image")
title = "ThermalSense: Object Detection in Thermal Images"
description ="""
πŸ”₯ Unveiling ThermalFoduu: Spot Objects with Thermal Vision! πŸ”πŸ“Έ Lost your keys in the dark? πŸ—οΈπŸŒ‘ ThermalFoduu's got you covered! Powered by Foduu AI, our app effortlessly detects objects in thermal images. No more blurry blobs – just pinpoint accuracy! πŸ¦…πŸŽ―
Love the thermal world? Give us a thumbs up! πŸ‘ Questions or suggestions? Contact us at info@foduu. Let's decode the thermal universe together! πŸ“§πŸŒ‘οΈ
"""
examples = [['samples/1.jpeg', 'foduucom/thermal-image-object-detection', 640, 0.25, 0.45], ['samples/2.jpg', 'foduucom/thermal-image-object-detection', 640, 0.25, 0.45]]
demo_app = gr.Interface(
fn=yolov8_inference,
inputs=inputs,
outputs=outputs,
title=title,
description=description,
examples=examples,
cache_examples=True,
theme='huggingface',
)
demo_app.queue().launch(debug=True)