File size: 6,952 Bytes
57abc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import torch.nn as nn
from typing import Tuple,  Union


from monai.networks.blocks.dynunet_block import UnetOutBlock
from monai.networks.blocks.unetr_block import UnetrBasicBlock, UnetrPrUpBlock, UnetrUpBlock

def build_sam_decoder_vit_h():
    return _build_sam_decoder(
        encoder_embed_dim=1280,
        encoder_num_heads=16,
    )

def build_sam_decoder_vit_l():
    return _build_sam_decoder(
        encoder_embed_dim=1024,
        encoder_num_heads=16,
    )

def build_sam_decoder_vit_b():
    return _build_sam_decoder(
        encoder_embed_dim=768,
        encoder_num_heads=12,
    )

sam_decoder_reg = {
    "default": build_sam_decoder_vit_h,
    "vit_h": build_sam_decoder_vit_h,
    "vit_l": build_sam_decoder_vit_l,
    "vit_b": build_sam_decoder_vit_b,
}

def _build_sam_decoder(
    encoder_embed_dim,
    encoder_num_heads,
):
    image_size = 1024
    vit_patch_size = 16

    return ImageDecoderViT(
        hidden_size=encoder_embed_dim,
        img_size=image_size,
        num_heads=encoder_num_heads,
        patch_size=vit_patch_size,
    )

class ImageDecoderViT(nn.Module):

    def __init__(
        self,
        in_channels: int = 3,

        feature_size: int = 64,
        hidden_size: int = 1280,
        conv_block: bool = True,
        res_block: bool = True,
        norm_name: Union[Tuple, str] = "instance",
        dropout_rate: float = 0.0,
        spatial_dims: int = 2,

        img_size: int = 1024,
        patch_size: int = 16,
        out_channels: int = 1,
        num_heads: int = 12,
    ) -> None:

        super().__init__()

        if not (0 <= dropout_rate <= 1):
            raise AssertionError("dropout_rate should be between 0 and 1.")

        if hidden_size % num_heads != 0:
            raise AssertionError("hidden size should be divisible by num_heads.")

        self.patch_size = patch_size
        self.feat_size = (
            img_size // self.patch_size,
            img_size // self.patch_size
        )
        self.hidden_size = hidden_size
        self.classification = False

        self.encoder_low_res_mask = nn.Sequential(
            UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=out_channels,
            out_channels=feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=res_block,
            ),
            UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=feature_size,
            out_channels=feature_size * 4,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=res_block,
            ),
        )

        self.decoder_fuse = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=feature_size * 8,
            out_channels=feature_size * 4,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=res_block,
        )

        self.encoder1 = UnetrBasicBlock(
            spatial_dims=spatial_dims,
            in_channels=in_channels,
            out_channels=feature_size,
            kernel_size=3,
            stride=1,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.encoder2 = UnetrPrUpBlock(
            spatial_dims=spatial_dims,
            in_channels=hidden_size,
            out_channels=feature_size * 2,
            num_layer=2,
            kernel_size=3,
            stride=1,
            upsample_kernel_size=2,
            norm_name=norm_name,
            conv_block=conv_block,
            res_block=res_block,
        )
        self.encoder3 = UnetrPrUpBlock(
            spatial_dims=spatial_dims,
            in_channels=hidden_size,
            out_channels=feature_size * 4,
            num_layer=1,
            kernel_size=3,
            stride=1,
            upsample_kernel_size=2,
            norm_name=norm_name,
            conv_block=conv_block,
            res_block=res_block,
        )
        self.encoder4 = UnetrPrUpBlock(
            spatial_dims=spatial_dims,
            in_channels=hidden_size,
            out_channels=feature_size * 8,
            num_layer=0,
            kernel_size=3,
            stride=1,
            upsample_kernel_size=2,
            norm_name=norm_name,
            conv_block=conv_block,
            res_block=res_block,
        )
        self.decoder5 = UnetrUpBlock(
            spatial_dims=spatial_dims,
            in_channels=hidden_size,
            out_channels=feature_size * 8,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder4 = UnetrUpBlock(
            spatial_dims=spatial_dims,
            in_channels=feature_size * 8,
            out_channels=feature_size * 4,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder3 = UnetrUpBlock(
            spatial_dims=spatial_dims,
            in_channels=feature_size * 4,
            out_channels=feature_size * 2,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.decoder2 = UnetrUpBlock(
            spatial_dims=spatial_dims,
            in_channels=feature_size * 2,
            out_channels=feature_size,
            kernel_size=3,
            upsample_kernel_size=2,
            norm_name=norm_name,
            res_block=res_block,
        )
        self.out = UnetOutBlock(spatial_dims=spatial_dims, in_channels=feature_size, out_channels=out_channels)
        self.proj_axes = (0, spatial_dims + 1) + tuple(d + 1 for d in range(spatial_dims))
        self.proj_view_shape = list(self.feat_size) + [self.hidden_size]


    def proj_feat(self, x):
        new_view = [x.size(0)] + self.proj_view_shape
        x = x.view(new_view)
        x = x.permute(self.proj_axes).contiguous()
        return x

    def forward(self, x_img,hidden_states_out, low_res_mask):
        
        enc1 = self.encoder1(x_img)
        x2 = hidden_states_out[0]
        enc2 = self.encoder2(self.proj_feat(x2))
        x3 = hidden_states_out[1]
        enc3 = self.encoder3(self.proj_feat(x3))
        x4 = hidden_states_out[2]
        enc4 = self.encoder4(self.proj_feat(x4))

        dec4 = self.proj_feat(hidden_states_out[3])
        dec3 = self.decoder5(dec4, enc4)
        dec2 = self.decoder4(dec3, enc3)

        if low_res_mask != None:
            enc_mask = self.encoder_low_res_mask(low_res_mask)
            fused_dec2 = torch.cat([dec2, enc_mask], dim=1)
            fused_dec2 = self.decoder_fuse(fused_dec2)
            dec1 = self.decoder3(fused_dec2, enc2)
        else:
            dec1 = self.decoder3(dec2, enc2)
            
        out = self.decoder2(dec1, enc1)

        return self.out(out)