DemoGPT / modules /models /ChuanhuAgent.py
JohnSmith9982's picture
Upload 85 files
b28a1a9
raw
history blame
9.6 kB
from langchain.chains.summarize import load_summarize_chain
from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.text_splitter import TokenTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.docstore.document import Document
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.callbacks.stdout import StdOutCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.manager import BaseCallbackManager
from duckduckgo_search import DDGS
from itertools import islice
from typing import Any, Dict, List, Optional, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.input import print_text
from langchain.schema import AgentAction, AgentFinish, LLMResult
from pydantic import BaseModel, Field
import requests
from bs4 import BeautifulSoup
from threading import Thread, Condition
from collections import deque
from .base_model import BaseLLMModel, CallbackToIterator, ChuanhuCallbackHandler
from ..config import default_chuanhu_assistant_model
from ..presets import SUMMARIZE_PROMPT, i18n
from ..index_func import construct_index
from langchain.callbacks import get_openai_callback
import os
import gradio as gr
import logging
class GoogleSearchInput(BaseModel):
keywords: str = Field(description="keywords to search")
class WebBrowsingInput(BaseModel):
url: str = Field(description="URL of a webpage")
class WebAskingInput(BaseModel):
url: str = Field(description="URL of a webpage")
question: str = Field(description="Question that you want to know the answer to, based on the webpage's content.")
class ChuanhuAgent_Client(BaseLLMModel):
def __init__(self, model_name, openai_api_key, user_name="") -> None:
super().__init__(model_name=model_name, user=user_name)
self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
self.api_key = openai_api_key
self.llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name=default_chuanhu_assistant_model, openai_api_base=os.environ.get("OPENAI_API_BASE", None))
self.cheap_llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name="gpt-3.5-turbo", openai_api_base=os.environ.get("OPENAI_API_BASE", None))
PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"])
self.summarize_chain = load_summarize_chain(self.cheap_llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
self.index_summary = None
self.index = None
if "Pro" in self.model_name:
self.tools = load_tools(["google-search-results-json", "llm-math", "arxiv", "wikipedia", "wolfram-alpha"], llm=self.llm)
else:
self.tools = load_tools(["ddg-search", "llm-math", "arxiv", "wikipedia"], llm=self.llm)
self.tools.append(
Tool.from_function(
func=self.google_search_simple,
name="Google Search JSON",
description="useful when you need to search the web.",
args_schema=GoogleSearchInput
)
)
self.tools.append(
Tool.from_function(
func=self.summary_url,
name="Summary Webpage",
description="useful when you need to know the overall content of a webpage.",
args_schema=WebBrowsingInput
)
)
self.tools.append(
StructuredTool.from_function(
func=self.ask_url,
name="Ask Webpage",
description="useful when you need to ask detailed questions about a webpage.",
args_schema=WebAskingInput
)
)
def google_search_simple(self, query):
results = []
with DDGS() as ddgs:
ddgs_gen = ddgs.text("notes from a dead house", backend="lite")
for r in islice(ddgs_gen, 10):
results.append({
"title": r["title"],
"link": r["href"],
"snippet": r["body"]
})
return str(results)
def handle_file_upload(self, files, chatbot, language):
"""if the model accepts multi modal input, implement this function"""
status = gr.Markdown.update()
if files:
index = construct_index(self.api_key, file_src=files)
assert index is not None, "获取索引失败"
self.index = index
status = i18n("索引构建完成")
# Summarize the document
logging.info(i18n("生成内容总结中……"))
with get_openai_callback() as cb:
os.environ["OPENAI_API_KEY"] = self.api_key
from langchain.chains.summarize import load_summarize_chain
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
prompt_template = "Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN " + language + ":"
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
llm = ChatOpenAI()
chain = load_summarize_chain(llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT)
summary = chain({"input_documents": list(index.docstore.__dict__["_dict"].values())}, return_only_outputs=True)["output_text"]
logging.info(f"Summary: {summary}")
self.index_summary = summary
chatbot.append((f"Uploaded {len(files)} files", summary))
logging.info(cb)
return gr.Files.update(), chatbot, status
def query_index(self, query):
if self.index is not None:
retriever = self.index.as_retriever()
qa = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff", retriever=retriever)
return qa.run(query)
else:
"Error during query."
def summary(self, text):
texts = Document(page_content=text)
texts = self.text_splitter.split_documents([texts])
return self.summarize_chain({"input_documents": texts}, return_only_outputs=True)["output_text"]
def fetch_url_content(self, url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
# 提取所有的文本
text = ''.join(s.getText() for s in soup.find_all('p'))
logging.info(f"Extracted text from {url}")
return text
def summary_url(self, url):
text = self.fetch_url_content(url)
if text == "":
return "URL unavailable."
text_summary = self.summary(text)
url_content = "webpage content summary:\n" + text_summary
return url_content
def ask_url(self, url, question):
text = self.fetch_url_content(url)
if text == "":
return "URL unavailable."
texts = Document(page_content=text)
texts = self.text_splitter.split_documents([texts])
# use embedding
embeddings = OpenAIEmbeddings(openai_api_key=self.api_key, openai_api_base=os.environ.get("OPENAI_API_BASE", None))
# create vectorstore
db = FAISS.from_documents(texts, embeddings)
retriever = db.as_retriever()
qa = RetrievalQA.from_chain_type(llm=self.cheap_llm, chain_type="stuff", retriever=retriever)
return qa.run(f"{question} Reply in 中文")
def get_answer_at_once(self):
question = self.history[-1]["content"]
# llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
reply = agent.run(input=f"{question} Reply in 简体中文")
return reply, -1
def get_answer_stream_iter(self):
question = self.history[-1]["content"]
it = CallbackToIterator()
manager = BaseCallbackManager(handlers=[ChuanhuCallbackHandler(it.callback)])
def thread_func():
tools = self.tools
if self.index is not None:
tools.append(
Tool.from_function(
func=self.query_index,
name="Query Knowledge Base",
description=f"useful when you need to know about: {self.index_summary}",
args_schema=WebBrowsingInput
)
)
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager)
try:
reply = agent.run(input=f"{question} Reply in 简体中文")
except Exception as e:
import traceback
traceback.print_exc()
reply = str(e)
it.callback(reply)
it.finish()
t = Thread(target=thread_func)
t.start()
partial_text = ""
for value in it:
partial_text += value
yield partial_text