|
from langchain.chains.summarize import load_summarize_chain |
|
from langchain import PromptTemplate, LLMChain |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.prompts import PromptTemplate |
|
from langchain.text_splitter import TokenTextSplitter |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.chains import RetrievalQA |
|
from langchain.agents import load_tools |
|
from langchain.agents import initialize_agent |
|
from langchain.agents import AgentType |
|
from langchain.docstore.document import Document |
|
from langchain.tools import BaseTool, StructuredTool, Tool, tool |
|
from langchain.callbacks.stdout import StdOutCallbackHandler |
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler |
|
from langchain.callbacks.manager import BaseCallbackManager |
|
from duckduckgo_search import DDGS |
|
from itertools import islice |
|
|
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
from langchain.callbacks.base import BaseCallbackHandler |
|
from langchain.input import print_text |
|
from langchain.schema import AgentAction, AgentFinish, LLMResult |
|
|
|
from pydantic import BaseModel, Field |
|
|
|
import requests |
|
from bs4 import BeautifulSoup |
|
from threading import Thread, Condition |
|
from collections import deque |
|
|
|
from .base_model import BaseLLMModel, CallbackToIterator, ChuanhuCallbackHandler |
|
from ..config import default_chuanhu_assistant_model |
|
from ..presets import SUMMARIZE_PROMPT, i18n |
|
from ..index_func import construct_index |
|
|
|
from langchain.callbacks import get_openai_callback |
|
import os |
|
import gradio as gr |
|
import logging |
|
|
|
class GoogleSearchInput(BaseModel): |
|
keywords: str = Field(description="keywords to search") |
|
|
|
class WebBrowsingInput(BaseModel): |
|
url: str = Field(description="URL of a webpage") |
|
|
|
class WebAskingInput(BaseModel): |
|
url: str = Field(description="URL of a webpage") |
|
question: str = Field(description="Question that you want to know the answer to, based on the webpage's content.") |
|
|
|
|
|
class ChuanhuAgent_Client(BaseLLMModel): |
|
def __init__(self, model_name, openai_api_key, user_name="") -> None: |
|
super().__init__(model_name=model_name, user=user_name) |
|
self.text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30) |
|
self.api_key = openai_api_key |
|
self.llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name=default_chuanhu_assistant_model, openai_api_base=os.environ.get("OPENAI_API_BASE", None)) |
|
self.cheap_llm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0, model_name="gpt-3.5-turbo", openai_api_base=os.environ.get("OPENAI_API_BASE", None)) |
|
PROMPT = PromptTemplate(template=SUMMARIZE_PROMPT, input_variables=["text"]) |
|
self.summarize_chain = load_summarize_chain(self.cheap_llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT) |
|
self.index_summary = None |
|
self.index = None |
|
if "Pro" in self.model_name: |
|
self.tools = load_tools(["google-search-results-json", "llm-math", "arxiv", "wikipedia", "wolfram-alpha"], llm=self.llm) |
|
else: |
|
self.tools = load_tools(["ddg-search", "llm-math", "arxiv", "wikipedia"], llm=self.llm) |
|
self.tools.append( |
|
Tool.from_function( |
|
func=self.google_search_simple, |
|
name="Google Search JSON", |
|
description="useful when you need to search the web.", |
|
args_schema=GoogleSearchInput |
|
) |
|
) |
|
|
|
self.tools.append( |
|
Tool.from_function( |
|
func=self.summary_url, |
|
name="Summary Webpage", |
|
description="useful when you need to know the overall content of a webpage.", |
|
args_schema=WebBrowsingInput |
|
) |
|
) |
|
|
|
self.tools.append( |
|
StructuredTool.from_function( |
|
func=self.ask_url, |
|
name="Ask Webpage", |
|
description="useful when you need to ask detailed questions about a webpage.", |
|
args_schema=WebAskingInput |
|
) |
|
) |
|
|
|
def google_search_simple(self, query): |
|
results = [] |
|
with DDGS() as ddgs: |
|
ddgs_gen = ddgs.text("notes from a dead house", backend="lite") |
|
for r in islice(ddgs_gen, 10): |
|
results.append({ |
|
"title": r["title"], |
|
"link": r["href"], |
|
"snippet": r["body"] |
|
}) |
|
return str(results) |
|
|
|
def handle_file_upload(self, files, chatbot, language): |
|
"""if the model accepts multi modal input, implement this function""" |
|
status = gr.Markdown.update() |
|
if files: |
|
index = construct_index(self.api_key, file_src=files) |
|
assert index is not None, "获取索引失败" |
|
self.index = index |
|
status = i18n("索引构建完成") |
|
|
|
logging.info(i18n("生成内容总结中……")) |
|
with get_openai_callback() as cb: |
|
os.environ["OPENAI_API_KEY"] = self.api_key |
|
from langchain.chains.summarize import load_summarize_chain |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chat_models import ChatOpenAI |
|
prompt_template = "Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN " + language + ":" |
|
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"]) |
|
llm = ChatOpenAI() |
|
chain = load_summarize_chain(llm, chain_type="map_reduce", return_intermediate_steps=True, map_prompt=PROMPT, combine_prompt=PROMPT) |
|
summary = chain({"input_documents": list(index.docstore.__dict__["_dict"].values())}, return_only_outputs=True)["output_text"] |
|
logging.info(f"Summary: {summary}") |
|
self.index_summary = summary |
|
chatbot.append((f"Uploaded {len(files)} files", summary)) |
|
logging.info(cb) |
|
return gr.Files.update(), chatbot, status |
|
|
|
def query_index(self, query): |
|
if self.index is not None: |
|
retriever = self.index.as_retriever() |
|
qa = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff", retriever=retriever) |
|
return qa.run(query) |
|
else: |
|
"Error during query." |
|
|
|
def summary(self, text): |
|
texts = Document(page_content=text) |
|
texts = self.text_splitter.split_documents([texts]) |
|
return self.summarize_chain({"input_documents": texts}, return_only_outputs=True)["output_text"] |
|
|
|
def fetch_url_content(self, url): |
|
response = requests.get(url) |
|
soup = BeautifulSoup(response.text, 'html.parser') |
|
|
|
|
|
text = ''.join(s.getText() for s in soup.find_all('p')) |
|
logging.info(f"Extracted text from {url}") |
|
return text |
|
|
|
def summary_url(self, url): |
|
text = self.fetch_url_content(url) |
|
if text == "": |
|
return "URL unavailable." |
|
text_summary = self.summary(text) |
|
url_content = "webpage content summary:\n" + text_summary |
|
|
|
return url_content |
|
|
|
def ask_url(self, url, question): |
|
text = self.fetch_url_content(url) |
|
if text == "": |
|
return "URL unavailable." |
|
texts = Document(page_content=text) |
|
texts = self.text_splitter.split_documents([texts]) |
|
|
|
embeddings = OpenAIEmbeddings(openai_api_key=self.api_key, openai_api_base=os.environ.get("OPENAI_API_BASE", None)) |
|
|
|
|
|
db = FAISS.from_documents(texts, embeddings) |
|
retriever = db.as_retriever() |
|
qa = RetrievalQA.from_chain_type(llm=self.cheap_llm, chain_type="stuff", retriever=retriever) |
|
return qa.run(f"{question} Reply in 中文") |
|
|
|
def get_answer_at_once(self): |
|
question = self.history[-1]["content"] |
|
|
|
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True) |
|
reply = agent.run(input=f"{question} Reply in 简体中文") |
|
return reply, -1 |
|
|
|
def get_answer_stream_iter(self): |
|
question = self.history[-1]["content"] |
|
it = CallbackToIterator() |
|
manager = BaseCallbackManager(handlers=[ChuanhuCallbackHandler(it.callback)]) |
|
def thread_func(): |
|
tools = self.tools |
|
if self.index is not None: |
|
tools.append( |
|
Tool.from_function( |
|
func=self.query_index, |
|
name="Query Knowledge Base", |
|
description=f"useful when you need to know about: {self.index_summary}", |
|
args_schema=WebBrowsingInput |
|
) |
|
) |
|
agent = initialize_agent(self.tools, self.llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, callback_manager=manager) |
|
try: |
|
reply = agent.run(input=f"{question} Reply in 简体中文") |
|
except Exception as e: |
|
import traceback |
|
traceback.print_exc() |
|
reply = str(e) |
|
it.callback(reply) |
|
it.finish() |
|
t = Thread(target=thread_func) |
|
t.start() |
|
partial_text = "" |
|
for value in it: |
|
partial_text += value |
|
yield partial_text |
|
|