from __future__ import annotations import logging import os import platform import colorama from ..index_func import * from ..presets import * from ..utils import * from .base_model import BaseLLMModel class ChatGLM_Client(BaseLLMModel): def __init__(self, model_name, user_name="") -> None: super().__init__(model_name=model_name, user=user_name) import torch from transformers import AutoModel, AutoTokenizer global CHATGLM_TOKENIZER, CHATGLM_MODEL if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None: system_name = platform.system() model_path = None if os.path.exists("models"): model_dirs = os.listdir("models") if model_name in model_dirs: model_path = f"models/{model_name}" if model_path is not None: model_source = model_path else: model_source = f"THUDM/{model_name}" CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained( model_source, trust_remote_code=True ) quantified = False if "int4" in model_name: quantified = True model = AutoModel.from_pretrained( model_source, trust_remote_code=True ) if torch.cuda.is_available(): # run on CUDA logging.info("CUDA is available, using CUDA") model = model.half().cuda() # mps加速还存在一些问题,暂时不使用 elif system_name == "Darwin" and model_path is not None and not quantified: logging.info("Running on macOS, using MPS") # running on macOS and model already downloaded model = model.half().to("mps") else: logging.info("GPU is not available, using CPU") model = model.float() model = model.eval() CHATGLM_MODEL = model def _get_glm_style_input(self): history = [x["content"] for x in self.history] query = history.pop() logging.debug(colorama.Fore.YELLOW + f"{history}" + colorama.Fore.RESET) assert ( len(history) % 2 == 0 ), f"History should be even length. current history is: {history}" history = [[history[i], history[i + 1]] for i in range(0, len(history), 2)] return history, query def get_answer_at_once(self): history, query = self._get_glm_style_input() response, _ = CHATGLM_MODEL.chat( CHATGLM_TOKENIZER, query, history=history) return response, len(response) def get_answer_stream_iter(self): history, query = self._get_glm_style_input() for response, history in CHATGLM_MODEL.stream_chat( CHATGLM_TOKENIZER, query, history, max_length=self.token_upper_limit, top_p=self.top_p, temperature=self.temperature, ): yield response