Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.preprocessing import image as keras_image
|
5 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
|
8 |
+
# Load your trained model
|
9 |
+
model = load_model('C:\Users\kewin\OneDrive\Desktop\OnePieceCharakter\Datensätze\OnePiece') # Ensure this path is correct
|
10 |
+
|
11 |
+
def predict_pokemon(img):
|
12 |
+
img = Image.fromarray(img.astype('uint8'), 'RGB') # Ensure the image is in RGB
|
13 |
+
img = img.resize((224, 224)) # Resize the image properly using PIL
|
14 |
+
img_array = keras_image.img_to_array(img) # Convert the image to an array
|
15 |
+
img_array = np.expand_dims(img_array, axis=0) # Expand dimensions to fit model input
|
16 |
+
img_array = preprocess_input(img_array) # Preprocess the input as expected by ResNet50
|
17 |
+
|
18 |
+
prediction = model.predict(img_array) # Predict using the model
|
19 |
+
classes = ['Brook', 'Chopper', 'Zoro' ] # Specific Pokémon names
|
20 |
+
return {classes[i]: float(prediction[0][i]) for i in range(3)} # Return the prediction
|
21 |
+
|
22 |
+
# Define Gradio interface
|
23 |
+
interface = gr.Interface(fn=predict_pokemon,
|
24 |
+
inputs="image", # Simplified input type
|
25 |
+
outputs="label", # Simplified output type
|
26 |
+
title="Pokémon Classifier",
|
27 |
+
description="Upload an image of a Pokémon and the classifier will predict its species.")
|
28 |
+
|
29 |
+
# Launch the interface
|
30 |
+
interface.launch()
|