import gradio as gr from PIL import Image import numpy as np from tensorflow.keras.preprocessing import image as keras_image from tensorflow.keras.applications.xception import preprocess_input from tensorflow.keras.models import load_model # Load your trained model model = load_model('/home/user/app/xception_model.h5') # Ensure this path is correct def predict_character(img): img = Image.fromarray(img.astype('uint8'), 'RGB') # Ensure the image is in RGB format img = img.resize((299, 299)) # Resize the image to the required size for Xception img_array = keras_image.img_to_array(img) # Convert the image to an array img_array = np.expand_dims(img_array, axis=0) # Expand dimensions to match the model input img_array = preprocess_input(img_array) # Preprocess the input for Xception prediction = model.predict(img_array) # Make a prediction with the model classes = ['bishop', 'knight', 'rook'] # Specific character names return {classes[i]: float(prediction[0][i]) for i in range(3)} # Return the prediction # Define the Gradio interface interface = gr.Interface(fn=predict_character, inputs="image", # Simplified input type outputs="label", # Simplified output type title="Chess Piece Classifier", description="Upload an image of a chess piece to classify it as a bishop, knight, or rook.") # Launch the interface interface.launch()