tts / tortoise /models /stream_generator.py
Manmay's picture
added streaming faster inference with hifidecoder
840a99d
# Adapted from: https://github.com/LowinLi/transformers-stream-generator
from transformers import (
GenerationConfig,
GenerationMixin,
LogitsProcessorList,
StoppingCriteriaList,
DisjunctiveConstraint,
BeamSearchScorer,
PhrasalConstraint,
ConstrainedBeamSearchScorer,
PreTrainedModel,
)
import numpy as np
import random
import warnings
import inspect
from transformers.generation.utils import GenerateOutput, SampleOutput, logger
import torch
from typing import Callable, List, Optional, Union
from torch import nn
import torch.distributed as dist
import copy
def setup_seed(seed):
if seed == -1:
return
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
class StreamGenerationConfig(GenerationConfig):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.do_stream = kwargs.pop("do_stream", False)
class NewGenerationMixin(GenerationMixin):
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[StreamGenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[
Callable[[int, torch.Tensor], List[int]]
] = None,
synced_gpus: Optional[bool] = False,
seed=0,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
kwargs:
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GreedySearchDecoderOnlyOutput`],
- [`~generation.SampleDecoderOnlyOutput`],
- [`~generation.BeamSearchDecoderOnlyOutput`],
- [`~generation.BeamSampleDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GreedySearchEncoderDecoderOutput`],
- [`~generation.SampleEncoderDecoderOutput`],
- [`~generation.BeamSearchEncoderDecoderOutput`],
- [`~generation.BeamSampleEncoderDecoderOutput`]
"""
setup_seed(seed)
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
if generation_config is None:
# legacy: users may modify the model configuration to control generation -- update the generation config
# model attribute accordingly, if it was created from the model config
if self.generation_config._from_model_config:
new_generation_config = StreamGenerationConfig.from_model_config(
self.config
)
if new_generation_config != self.generation_config:
warnings.warn(
"You have modified the pretrained model configuration to control generation. This is a"
" deprecated strategy to control generation and will be removed soon, in a future version."
" Please use a generation configuration file (see"
" https://huggingface.co/docs/transformers/main_classes/text_generation)"
)
self.generation_config = new_generation_config
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(
**kwargs
) # All unused kwargs must be model kwargs
# self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = (
logits_processor if logits_processor is not None else LogitsProcessorList()
)
stopping_criteria = (
stopping_criteria
if stopping_criteria is not None
else StoppingCriteriaList()
)
if (
generation_config.pad_token_id is None
and generation_config.eos_token_id is not None
):
if model_kwargs.get("attention_mask", None) is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(
f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation."
)
generation_config.pad_token_id = eos_token_id
# 3. Define model inputs
# inputs_tensor has to be defined
# model_input_name is defined if model-specific keyword input is passed
# otherwise model_input_name is None
# all model-specific keyword inputs are removed from `model_kwargs`
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
# 4. Define other model kwargs
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
model_kwargs["use_cache"] = generation_config.use_cache
accepts_attention_mask = "attention_mask" in set(
inspect.signature(self.forward).parameters.keys()
)
requires_attention_mask = "encoder_outputs" not in model_kwargs
if (
model_kwargs.get("attention_mask", None) is None
and requires_attention_mask
and accepts_attention_mask
):
model_kwargs[
"attention_mask"
] = self._prepare_attention_mask_for_generation(
inputs_tensor,
generation_config.pad_token_id,
generation_config.eos_token_id,
)
# decoder-only models should use left-padding for generation
if not self.config.is_encoder_decoder:
if (
generation_config.pad_token_id is not None
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id)
> 0
):
logger.warning(
"A decoder-only architecture is being used, but right-padding was detected! For correct "
"generation results, please set `padding_side='left'` when initializing the tokenizer."
)
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
# if model is encoder decoder encoder_outputs are created
# and added to `model_kwargs`
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
if self.config.is_encoder_decoder:
input_ids = self._prepare_decoder_input_ids_for_generation(
batch_size,
decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
model_kwargs=model_kwargs,
device=inputs_tensor.device,
)
else:
# if decoder-only then inputs_tensor has to be `input_ids`
input_ids = inputs_tensor
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
has_default_max_length = (
kwargs.get("max_length") is None
and generation_config.max_length is not None
)
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
"Neither `max_length` nor `max_new_tokens` has been set, `max_length` will default to"
f" {generation_config.max_length} (`generation_config.max_length`). Controlling `max_length` via the"
" config is deprecated and `max_length` will be removed from the config in v5 of Transformers -- we"
" recommend using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif has_default_max_length and generation_config.max_new_tokens is not None:
generation_config.max_length = (
generation_config.max_new_tokens + input_ids_seq_length
)
elif (
not has_default_max_length and generation_config.max_new_tokens is not None
):
raise ValueError(
"Both `max_new_tokens` and `max_length` have been set but they serve the same purpose -- setting a"
" limit to the generated output length. Remove one of those arguments. Please refer to the"
" documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
if (
generation_config.min_length is not None
and generation_config.min_length > generation_config.max_length
):
raise ValueError(
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
f" the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = (
"decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
)
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# 7. determine generation mode
is_constraint_gen_mode = (
generation_config.constraints is not None
or generation_config.force_words_ids is not None
)
is_contrastive_search_gen_mode = (
generation_config.top_k is not None
and generation_config.top_k > 1
and generation_config.do_sample is False
and generation_config.penalty_alpha is not None
and generation_config.penalty_alpha > 0
)
is_greedy_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is False
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_sample_gen_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is True
and generation_config.do_stream is False
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_sample_gen_stream_mode = (
(generation_config.num_beams == 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_stream is True
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_beam_gen_mode = (
(generation_config.num_beams > 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is False
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_beam_sample_gen_mode = (
(generation_config.num_beams > 1)
and (generation_config.num_beam_groups == 1)
and generation_config.do_sample is True
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
is_group_beam_gen_mode = (
(generation_config.num_beams > 1)
and (generation_config.num_beam_groups > 1)
and not is_constraint_gen_mode
and not is_contrastive_search_gen_mode
)
if generation_config.num_beam_groups > generation_config.num_beams:
raise ValueError(
"`num_beam_groups` has to be smaller or equal to `num_beams`"
)
if is_group_beam_gen_mode and generation_config.do_sample is True:
raise ValueError(
"Diverse beam search cannot be used in sampling mode. Make sure that `do_sample` is set to `False`."
)
if self.device.type != input_ids.device.type:
warnings.warn(
"You are calling .generate() with the `input_ids` being on a device type different"
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
" Please make sure that you have put `input_ids` to the"
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
" running `.generate()`.",
UserWarning,
)
# 8. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
# 9. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
# 10. go into different generation modes
if is_greedy_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
" greedy search."
)
# 11. run greedy search
return self.greedy_search(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_contrastive_search_gen_mode:
if generation_config.num_return_sequences > 1:
raise ValueError(
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
" contrastive search."
)
return self.contrastive_search(
input_ids,
top_k=generation_config.top_k,
penalty_alpha=generation_config.penalty_alpha,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run sample
return self.sample(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_sample_gen_stream_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run sample
return self.sample_stream(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_beam_gen_mode:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError(
"`num_return_sequences` has to be smaller or equal to `num_beams`."
)
if stopping_criteria.max_length is None:
raise ValueError(
"`max_length` needs to be a stopping_criteria for now."
)
# 11. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
return self.beam_search(
input_ids,
beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_beam_sample_gen_mode:
# 11. prepare logits warper
logits_warper = self._get_logits_warper(generation_config)
if stopping_criteria.max_length is None:
raise ValueError(
"`max_length` needs to be a stopping_criteria for now."
)
# 12. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size * generation_config.num_return_sequences,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
)
# 13. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams
* generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 14. run beam sample
return self.beam_sample(
input_ids,
beam_scorer,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_group_beam_gen_mode:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError(
"`num_return_sequences` has to be smaller or equal to `num_beams`."
)
if generation_config.num_beams % generation_config.num_beam_groups != 0:
raise ValueError(
"`num_beams` should be divisible by `num_beam_groups` for group beam search."
)
if stopping_criteria.max_length is None:
raise ValueError(
"`max_length` needs to be a stopping_criteria for now."
)
has_default_typical_p = (
kwargs.get("typical_p") is None and generation_config.typical_p == 1.0
)
if not has_default_typical_p:
raise ValueError(
"Decoder argument `typical_p` is not supported with beam groups."
)
# 11. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
max_length=stopping_criteria.max_length,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
num_beam_groups=generation_config.num_beam_groups,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
return self.group_beam_search(
input_ids,
beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_constraint_gen_mode:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError(
"`num_return_sequences` has to be smaller or equal to `num_beams`."
)
if stopping_criteria.max_length is None:
raise ValueError(
"`max_length` needs to be a stopping_criteria for now."
)
if generation_config.num_beams <= 1:
raise ValueError(
"`num_beams` needs to be greater than 1 for constrained generation."
)
if generation_config.do_sample:
raise ValueError(
"`do_sample` needs to be false for constrained generation."
)
if (
generation_config.num_beam_groups is not None
and generation_config.num_beam_groups > 1
):
raise ValueError(
"`num_beam_groups` not supported yet for constrained generation."
)
final_constraints = []
if generation_config.constraints is not None:
final_constraints = generation_config.constraints
if generation_config.force_words_ids is not None:
def typeerror():
raise ValueError(
"`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]`"
f"of positive integers, but is {generation_config.force_words_ids}."
)
if (
not isinstance(generation_config.force_words_ids, list)
or len(generation_config.force_words_ids) == 0
):
typeerror()
for word_ids in generation_config.force_words_ids:
if isinstance(word_ids[0], list):
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any(
not isinstance(token_ids, list) for token_ids in word_ids
):
typeerror()
if any(
any(
(not isinstance(token_id, int) or token_id < 0)
for token_id in token_ids
)
for token_ids in word_ids
):
typeerror()
constraint = DisjunctiveConstraint(word_ids)
else:
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any(
(not isinstance(token_id, int) or token_id < 0)
for token_id in word_ids
):
typeerror()
constraint = PhrasalConstraint(word_ids)
final_constraints.append(constraint)
# 11. prepare beam search scorer
constrained_beam_scorer = ConstrainedBeamSearchScorer(
constraints=final_constraints,
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
return self.constrained_beam_search(
input_ids,
constrained_beam_scorer=constrained_beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
@torch.no_grad()
def sample_stream(
self,
input_ids: torch.LongTensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_warper: Optional[LogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: Optional[bool] = False,
**model_kwargs,
) -> Union[SampleOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
<Tip warning={true}>
In most cases, you do not need to call [`~generation.GenerationMixin.sample`] directly. Use generate() instead.
For an overview of generation strategies and code examples, check the [following
guide](./generation_strategies).
</Tip>
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`, *optional*):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`, *optional*):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
logits_warper (`LogitsProcessorList`, *optional*):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step.
max_length (`int`, *optional*, defaults to 20):
**DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
tokens. The maximum length of the sequence to be generated.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`int`, *optional*):
The id of the *end-of-sequence* token.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.SampleDecoderOnlyOutput`], [`~generation.SampleEncoderDecoderOutput`] or `torch.LongTensor`:
A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.SampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.SampleEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
Examples:
```python
>>> from transformers import (
... AutoTokenizer,
... AutoModelForCausalLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... TopKLogitsWarper,
... TemperatureLogitsWarper,
... StoppingCriteriaList,
... MaxLengthCriteria,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
>>> model.config.pad_token_id = model.config.eos_token_id
>>> model.generation_config.pad_token_id = model.config.eos_token_id
>>> input_prompt = "Today is a beautiful day, and"
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList(
... [
... MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
... ]
... )
>>> # instantiate logits processors
>>> logits_warper = LogitsProcessorList(
... [
... TopKLogitsWarper(50),
... TemperatureLogitsWarper(0.7),
... ]
... )
>>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
>>> outputs = model.sample(
... input_ids,
... logits_processor=logits_processor,
... logits_warper=logits_warper,
... stopping_criteria=stopping_criteria,
... )
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Today is a beautiful day, and a wonderful day.\n\nI was lucky enough to meet the']
```"""
# init values
logits_processor = (
logits_processor if logits_processor is not None else LogitsProcessorList()
)
stopping_criteria = (
stopping_criteria
if stopping_criteria is not None
else StoppingCriteriaList()
)
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use"
" `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(
stopping_criteria, max_length
)
logits_warper = (
logits_warper if logits_warper is not None else LogitsProcessorList()
)
pad_token_id = (
pad_token_id
if pad_token_id is not None
else self.generation_config.pad_token_id
)
eos_token_id = (
eos_token_id
if eos_token_id is not None
else self.generation_config.eos_token_id
)
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
output_scores = (
output_scores
if output_scores is not None
else self.generation_config.output_scores
)
output_attentions = (
output_attentions
if output_attentions is not None
else self.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.generation_config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = (
() if (return_dict_in_generate and output_attentions) else None
)
cross_attentions = (
() if (return_dict_in_generate and output_attentions) else None
)
decoder_hidden_states = (
() if (return_dict_in_generate and output_hidden_states) else None
)
# keep track of which sequences are already finished
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
this_peer_finished = False # used by synced_gpus only
# auto-regressive generation
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(
0.0 if this_peer_finished else 1.0
).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,)
if self.config.is_encoder_decoder
else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError(
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
)
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
1 - unfinished_sequences
)
yield next_tokens, self.final_norm(outputs.hidden_states[-1][:, -1])
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul(
(sum(next_tokens != i for i in eos_token_id)).long()
)
# stop when each sentence is finished, or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
if not synced_gpus:
break
else:
this_peer_finished = True
def init_stream_support():
"""Overload PreTrainedModel for streaming."""
PreTrainedModel.generate_stream = NewGenerationMixin.generate
PreTrainedModel.sample_stream = NewGenerationMixin.sample_stream
if __name__ == "__main__":
from transformers import PreTrainedModel
from transformers import AutoTokenizer, AutoModelForCausalLM
PreTrainedModel.generate = NewGenerationMixin.generate
PreTrainedModel.sample_stream = NewGenerationMixin.sample_stream
model = AutoModelForCausalLM.from_pretrained(
"bigscience/bloom-560m", torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
model = model.to("cuda:0")
model = model.eval()
prompt_text = "hello? \n"
input_ids = tokenizer(
prompt_text, return_tensors="pt", add_special_tokens=False
).input_ids
input_ids = input_ids.to("cuda:0")
with torch.no_grad():
result = model.generate(
input_ids,
max_new_tokens=200,
do_sample=True,
top_k=30,
top_p=0.85,
temperature=0.35,
repetition_penalty=1.2,
early_stopping=True,
seed=0,
)
print(tokenizer.decode(result, skip_special_tokens=True))
generator = model.generate(
input_ids,
max_new_tokens=200,
do_sample=True,
top_k=30,
top_p=0.85,
temperature=0.35,
repetition_penalty=1.2,
early_stopping=True,
seed=0,
do_stream=True,
)
stream_result = ""
for x in generator:
chunk = tokenizer.decode(x, skip_special_tokens=True)
stream_result += chunk
print(stream_result)