File size: 4,287 Bytes
48f7a01
f45a6d7
0b97654
19d82a1
48f7a01
0d55847
 
 
 
 
 
 
48f7a01
 
 
0b97654
f45a6d7
19d82a1
 
 
 
 
 
 
 
 
f45a6d7
03037e8
 
0b97654
 
0d55847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import json
from google.oauth2 import service_account
from cryptography.fernet import Fernet

from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain

from vertexai.preview.vision_models import Image
from vertexai.preview.vision_models import ImageQnAModel
import vertexai
PROJECT_ID = "franz-media-1512554302520"
LOCATION = "us-central1"
CRED_PATH = "creds.json"

with open("key.json","w") as f:
    encrypted_data = f.read()

cipher_suite = Fernet(os.environ["ENCRYPTION_KEY"])
decrypted_data = cipher_suite.decrypt(encrypted_data)


with open(CRED_PATH,"wb") as f:
    f.write(decrypted_data)

print("stored")

credentials = service_account.Credentials.from_service_account_file(CRED_PATH)
vertexai.init(project=PROJECT_ID, location=LOCATION,credentials=credentials)
image_qna_model = ImageQnAModel.from_pretrained("imagetext@001")


template = """You are a super smart and charming GPT living inside of a plant, every day you get a text with your status. Your task then is to write a flirty message to your owner.
Status Data:
{question}

Let's think step by step.
Flirty message:
"""

prompt = PromptTemplate(template=template, input_variables=["question"])
llm = ChatOpenAI(model="gpt-4")
llm_chain = LLMChain(prompt=prompt, llm=llm)


def detect_question(image_path, question):
    # Ask a question about the image
    image = Image.load_from_file(image_path)
    return image_qna_model.ask_question(image=image, question=question)[0]


import gradio as gr
import os
import time

# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.

local_history = []
global_cache = {}


def add_text(history, text):
    global global_history, global_message
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)


def add_file(history, file):
    history = history + [((file.name,), None)]

    return history


def bot(history):
    global global_cache
    last_msg = history[-1][-0]
    if isinstance(last_msg, tuple):
        last_msg = last_msg[0]

    # check if last message is an existing path
    history[-1][1] = ""
    global_cache["history"] = history
    global_cache["last_msg"] = last_msg

    if os.path.exists(last_msg):
        history[-1][1] += "Detecting image..."
        yield history
        answer = detect_question(
            last_msg,
            "Your task is to save the main plant, classify what kind of plant it is:",
        )
        history[-1][1] = f"Plant detected: {answer}\n"
        yield history
        answer = detect_question(
            last_msg,
            "Where is orange indicator on the moist level on the soil hydrometer? DRY, MOIST or WET?",
        )
        history[-1][1] += f"Hydration level detected: {answer}\n"
        yield history
        answer = detect_question(
            last_msg,
            "Your task is to save the main plant, does it have a visible disease:",
        )
        history[-1][1] += f"Disease detected: {answer}\n"
        yield history
        status = history[-1][1]
        chat = llm_chain.run(status)
        history.append((chat, None))
        yield history
    else:
        history[-1][1] = "Thinking..."


def change_fn(*args, **kwargs):
    global_cache["args"] = args
    # global_history = history
    # return history


with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
        local_history,
        elem_id="chatbot",
        bubble_full_width=False,
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=4,
            show_label=False,
            placeholder="Enter text and press enter, or upload an image",
            container=False,
        )
        btn = gr.UploadButton("📁", file_types=["image", "video", "audio"])

    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
        bot, chatbot, chatbot, api_name="bot_response"
    )
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
    file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
        bot, chatbot, chatbot
    )

demo.launch(auth=("admin", os.environ["DEMO_KEY"]))