frappuccino commited on
Commit
0140c70
·
verified ·
1 Parent(s): a5fc0a6

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +21 -0
  2. .ipynb_checkpoints/gpt-caption-checkpoint.py +604 -0
  3. .ipynb_checkpoints/install_linux_mac-checkpoint.sh +39 -0
  4. .ipynb_checkpoints/start_linux_mac-checkpoint.sh +8 -0
  5. LICENSE +674 -0
  6. README-CN.md +127 -0
  7. README.md +107 -8
  8. gpt-caption.py +604 -0
  9. install_linux_mac.sh +39 -0
  10. install_script/check.txt +19 -0
  11. install_script/check_open.py +50 -0
  12. install_script/deepspeed-0.11.2+8ce7471-py3-none-any.whl +0 -0
  13. install_script/installcog.bat +43 -0
  14. install_script/installcog.sh +40 -0
  15. install_script/require.txt +19 -0
  16. install_script/requirements.txt +11 -0
  17. install_windows.bat +72 -0
  18. lib/Api_Utils.py +382 -0
  19. lib/Detecter.py +60 -0
  20. lib/Failed_Tagging_File_Screening.py +73 -0
  21. lib/GPT_Prompt.py +38 -0
  22. lib/Img_Processing.py +147 -0
  23. lib/Tag_Processor.py +231 -0
  24. lib/Translator.py +79 -0
  25. moondream/__init__.py +2 -0
  26. moondream/configuration_moondream.py +74 -0
  27. moondream/modeling_phi.py +720 -0
  28. moondream/moondream.py +107 -0
  29. moondream/util.py +13 -0
  30. moondream/vision_encoder.py +136 -0
  31. omnichat.py +219 -0
  32. omnilmm/__init__.py +0 -0
  33. omnilmm/constants.py +4 -0
  34. omnilmm/conversation.py +320 -0
  35. omnilmm/model/__init__.py +1 -0
  36. omnilmm/model/omnilmm.py +457 -0
  37. omnilmm/model/resampler.py +171 -0
  38. omnilmm/model/utils.py +555 -0
  39. omnilmm/train/train_utils.py +153 -0
  40. omnilmm/utils.py +127 -0
  41. openai_api.py +501 -0
  42. start_linux_mac.sh +8 -0
  43. start_windows.bat +9 -0
  44. utils/__init__.py +0 -0
  45. utils/merge_model.py +42 -0
  46. utils/split_dataset.py +35 -0
  47. utils/utils/__init__.py +5 -0
  48. utils/utils/chat.py +149 -0
  49. utils/utils/dataset.py +61 -0
  50. utils/utils/grounding_parser.py +86 -0
.gitignore ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 忽略环境文件夹
2
+ myenv/
3
+ __pycache__/
4
+ models/
5
+ releases/
6
+ huggingface/
7
+
8
+ # 忽略特定的配置文件和图片
9
+ api_settings.json
10
+ saved_prompts.csv
11
+ install_temp.txt
12
+
13
+ # 忽略系统特定的文件
14
+ Thumbs.db
15
+ .DS_Store
16
+ .vs/
17
+ *.pyproj
18
+ *.user
19
+ *.sln
20
+
21
+ flash_attn-2.4.2+cu118torch2.0cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
.ipynb_checkpoints/gpt-caption-checkpoint.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import argparse
3
+ import os
4
+ import shutil
5
+ import threading
6
+
7
+ import concurrent.futures
8
+ from tqdm import tqdm
9
+
10
+ import subprocess
11
+ import time
12
+ import requests
13
+ import socket
14
+
15
+ from lib.Img_Processing import process_images_in_folder, run_script
16
+ from lib.Tag_Processor import modify_file_content, process_tags
17
+ from lib.GPT_Prompt import get_prompts_from_csv, save_prompt, delete_prompt
18
+ from lib.Api_Utils import run_openai_api, save_api_details, get_api_details, downloader, installer, save_state, qwen_api_switch
19
+ from lib.Detecter import detecter
20
+
21
+ os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
22
+ mod_default, saved_api_key, saved_api_url = get_api_details()
23
+ SUPPORTED_IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.webp', '.bmp', '.gif', '.tiff', '.tif')
24
+
25
+ # 图像打标
26
+ should_stop = threading.Event()
27
+ def stop_batch_processing():
28
+ should_stop.set()
29
+ return "Attempting to stop batch processing. Please wait for the current image to finish."
30
+
31
+ def process_single_image(api_key, prompt, api_url, image_path, quality, timeout, model="gpt-4o"):
32
+ save_api_details(api_key, api_url)
33
+ caption = run_openai_api(image_path, prompt, api_key, api_url, quality, timeout, model)
34
+ print(caption)
35
+ return caption
36
+
37
+ def process_batch_images(api_key, prompt, api_url, image_dir, file_handling_mode, quality, timeout, model="gpt-4o"):
38
+ should_stop.clear()
39
+ save_api_details(api_key, api_url)
40
+ results = []
41
+
42
+ image_files = []
43
+ for root, dirs, files in os.walk(image_dir):
44
+ for file in files:
45
+ if file.lower().endswith(SUPPORTED_IMAGE_FORMATS):
46
+ image_files.append(os.path.join(root, file))
47
+
48
+ def process_image(filename, file_handling_mode):
49
+ image_path = os.path.join(image_dir, filename)
50
+ base_filename = os.path.splitext(filename)[0]
51
+ caption_filename = f"{base_filename}.txt"
52
+ caption_path = os.path.join(image_dir, caption_filename)
53
+
54
+ if file_handling_mode != "skip/跳过" or not os.path.exists(caption_path):
55
+ caption = run_openai_api(image_path, prompt, api_key, api_url, quality, timeout, model)
56
+
57
+ if caption.startswith("Error:") or caption.startswith("API error:"):
58
+ return handle_error(image_path, caption_path, caption_filename, filename)
59
+ else:
60
+ modify_file_content(caption_path, caption, file_handling_mode)
61
+ return filename, caption_path
62
+ else:
63
+ return filename, "Skipped because caption file already exists."
64
+
65
+ def handle_error(image_path, caption_path, caption_filename, filename):
66
+ parent_dir = os.path.dirname(image_dir)
67
+ error_image_dir = os.path.join(parent_dir, "error_images")
68
+ if not os.path.exists(error_image_dir):
69
+ os.makedirs(error_image_dir)
70
+
71
+ error_image_path = os.path.join(error_image_dir, filename)
72
+ error_caption_path = os.path.join(error_image_dir, caption_filename)
73
+
74
+ try:
75
+ shutil.move(image_path, error_image_path)
76
+ if os.path.exists(caption_path):
77
+ shutil.move(caption_path, error_caption_path)
78
+ return filename, "Error handled and image with its caption moved to error directory."
79
+ except Exception as e:
80
+ return filename, f"An unexpected error occurred while moving {filename} or {caption_filename}: {e}"
81
+
82
+ with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
83
+ futures = {}
84
+ for filename in image_files:
85
+ future = executor.submit(process_image, filename, file_handling_mode)
86
+ futures[future] = filename # 将 future 和 filename 映射起来
87
+ progress = tqdm(total=len(futures), desc="Processing images")
88
+
89
+ try:
90
+ for future in concurrent.futures.as_completed(futures):
91
+ filename = futures[future]
92
+ if should_stop.is_set():
93
+ for f in futures:
94
+ f.cancel()
95
+ print("Batch processing was stopped by the user.")
96
+ break
97
+ try:
98
+ result = future.result()
99
+ except Exception as e:
100
+ result = (filename, f"An exception occurred: {e}")
101
+ print(f"An exception occurred while processing {filename}: {e}")
102
+ results.append(result)
103
+ progress.update(1)
104
+ finally:
105
+ progress.close()
106
+ executor.shutdown(wait=False)
107
+
108
+ print(f"Processing complete. Total images processed: {len(results)}")
109
+ return results
110
+
111
+ def handle_file(image_path, target_path, file_handling_mode):
112
+ try:
113
+ if file_handling_mode[:4] == "copy":
114
+ shutil.copy(image_path, target_path)
115
+ elif file_handling_mode[:4] == "move":
116
+ shutil.move(image_path, target_path)
117
+ except Exception as e:
118
+ print(f"An exception occurred while handling the file {image_path}: {e}")
119
+ return f"Error handling file {image_path}: {e}"
120
+ return
121
+
122
+ def process_batch_watermark_detection(api_key, prompt, api_url, image_dir, detect_file_handling_mode, quality, timeout,
123
+ watermark_dir, model="gpt-4o"):
124
+ should_stop.clear()
125
+ save_api_details(api_key, api_url)
126
+ results = []
127
+ prompt = 'Is image have watermark'
128
+
129
+ image_files = []
130
+ for root, dirs, files in os.walk(image_dir):
131
+ for file in files:
132
+ if file.lower().endswith(SUPPORTED_IMAGE_FORMATS):
133
+ image_files.append(os.path.join(root, file))
134
+
135
+ def process_image(filename, detect_file_handling_mode, watermark_dir):
136
+ image_path = os.path.join(image_dir, filename)
137
+ caption = run_openai_api(image_path, prompt, api_key, api_url, quality, timeout, model)
138
+
139
+ if caption.startswith("Error:") or caption.startswith("API error:"):
140
+ return "error"
141
+
142
+ # EOI是cog迷之误判?
143
+ if 'Yes,' in caption and '\'EOI\'' not in caption:
144
+ target_path = os.path.join(watermark_dir, filename)
145
+ handle_file(filename, watermark_dir, detect_file_handling_mode)
146
+
147
+ with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
148
+ futures = {}
149
+ for filename in image_files:
150
+ future = executor.submit(process_image, filename, detect_file_handling_mode, watermark_dir)
151
+ futures[future] = filename # 将 future 和 filename 映射起来
152
+ progress = tqdm(total=len(futures), desc="Processing images")
153
+
154
+ try:
155
+ for future in concurrent.futures.as_completed(futures):
156
+ filename = futures[future] # 获取正在处理的文件名
157
+ if should_stop.is_set():
158
+ for f in futures:
159
+ f.cancel()
160
+ print("Batch processing was stopped by the user.")
161
+ break
162
+ try:
163
+ result = future.result()
164
+ except Exception as e:
165
+ result = (filename, f"An exception occurred: {e}")
166
+ print(f"An exception occurred while processing {filename}: {e}")
167
+ results.append(result)
168
+ progress.update(1)
169
+ finally:
170
+ progress.close()
171
+ executor.shutdown(wait=False)
172
+
173
+ results = f"Total checked images: {len(results)}"
174
+ return results
175
+
176
+ def classify_images(api_key, api_url, quality, prompt, timeout, detect_file_handling_mode, image_dir, o_dir, *list_r):
177
+
178
+ # 初始化
179
+ should_stop.clear()
180
+ save_api_details(api_key, api_url)
181
+ results = []
182
+
183
+ # 检查输入
184
+ if not os.path.exists(image_dir):
185
+ return "Error: Image directory does not exist. / 错误:图片目录不存在"
186
+ if not o_dir:
187
+ o_dir = os.path.join(image_dir, "classify_output")
188
+ if not os.path.exists(o_dir):
189
+ os.makedirs(o_dir)
190
+
191
+ # 获取图像
192
+ image_files = []
193
+ for root, dirs, files in os.walk(image_dir):
194
+ for file in files:
195
+ if file.lower().endswith(SUPPORTED_IMAGE_FORMATS):
196
+ image_files.append(os.path.join(root, file))
197
+
198
+ # 转换列表
199
+ rules = []
200
+ for i in range(0, len(list_r), 2):
201
+ rule_type = list_r[i]
202
+ rule_input = list_r[i + 1]
203
+ if rule_type and rule_input:
204
+ rule_type_bool = rule_type == "Involve / 包含"
205
+ rules.append((rule_type_bool, rule_input))
206
+ if rules == []:
207
+ return "Error: All rules are empty. / 错误:未设置规则"
208
+
209
+ # 图像处理
210
+ def process_image(filename, rules, detect_file_handling_mode, image_dir, o_dir, model="gpt-4o"):
211
+ image_path = os.path.join(image_dir, filename)
212
+ caption = run_openai_api(image_path, prompt, api_key, api_url, quality, timeout, model)
213
+
214
+ if caption.startswith("Error:") or caption.startswith("API error:"):
215
+ return "error"
216
+
217
+ matching_rules = []
218
+ for rule_bool, rule_input in rules:
219
+ if (rule_bool and rule_input in caption) or (not rule_bool and rule_input not in caption):
220
+ matching_rules.append(rule_input)
221
+
222
+ if matching_rules:
223
+ folder_name = "-".join(matching_rules)
224
+ target_folder = os.path.join(o_dir, folder_name)
225
+ os.makedirs(target_folder, exist_ok=True)
226
+ handle_file(filename, target_folder, detect_file_handling_mode)
227
+ elif matching_rules == []:
228
+ no_match_folder = os.path.join(o_dir, "no_match")
229
+ os.makedirs(no_match_folder, exist_ok=True)
230
+ handle_file(filename, no_match_folder, detect_file_handling_mode)
231
+
232
+ # 批量处理
233
+ with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
234
+ futures = {}
235
+ for filename in image_files:
236
+ future = executor.submit(process_image, filename, rules, detect_file_handling_mode, image_dir, o_dir)
237
+ futures[future] = filename # 将 future 和 filename 映射起来
238
+ progress = tqdm(total=len(futures), desc="Processing images")
239
+
240
+ try:
241
+ for future in concurrent.futures.as_completed(futures):
242
+ filename = futures[future] # 获取正在处理的文件名
243
+
244
+ if should_stop.is_set():
245
+ for f in futures:
246
+ f.cancel()
247
+ print("Batch processing was stopped by the user.")
248
+ break
249
+
250
+ try:
251
+ result = future.result()
252
+ except Exception as e:
253
+ result = (filename, f"An exception occurred: {e}")
254
+ print(f"An exception occurred while processing {filename}: {e}")
255
+ results.append(result)
256
+ progress.update(1)
257
+
258
+
259
+ finally:
260
+ progress.close()
261
+ executor.shutdown(wait=False)
262
+
263
+ results = f"Total checked images: {len(results)}"
264
+ return results
265
+
266
+ # api
267
+ def switch_API(api, state):
268
+ def is_connection():
269
+ try:
270
+ socket.create_connection(("127.0.0.1", 8000), timeout=1)
271
+ print("API has started.")
272
+ return True
273
+ except (socket.timeout, ConnectionRefusedError):
274
+ return False
275
+ if api[:3] == 'GPT' or api[:4] == "qwen":
276
+ if is_connection():
277
+ requests.post(f"http://127.0.0.1:8000/v1/close")
278
+ key = saved_api_key
279
+ url = saved_api_url
280
+ time_out = 100
281
+ if api[:4] == "qwen" and url.endswith("/v1/services/aigc/multimodal-generation/generation"):
282
+ mod = qwen_api_switch(api)
283
+ else:
284
+ mod = 'GPT4V'
285
+ s_state = mod
286
+
287
+ elif api[:3] == 'Cog' or api[:4] == "moon" or api[:7] == "MiniCPM":
288
+ if is_connection():
289
+ if state != api:
290
+ requests.post(f"http://127.0.0.1:8000/v1/{api}")
291
+ else:
292
+ API_command = f'python openai_api.py --mod {api}'
293
+ subprocess.Popen(API_command,shell=True)
294
+ while True:
295
+ if is_connection():
296
+ break
297
+ else:
298
+ print("Retrying...")
299
+ time.sleep(2)
300
+
301
+ key = ""
302
+ url = "http://127.0.0.1:8000/v1/chat/completions"
303
+ time_out = 300
304
+ s_state = api
305
+
306
+ return key, url, time_out, s_state
307
+
308
+ # UI界面
309
+ with gr.Blocks(title="GPT4V captioner") as demo:
310
+ gr.Markdown("### Image Captioning with GPT-4-Vision API / 使用 GPT-4-Vision API 进行图像打标")
311
+
312
+ with gr.Row():
313
+ api_key_input = gr.Textbox(label="API Key", placeholder="Enter your GPT-4-Vision API Key here", type="password",
314
+ value=saved_api_key)
315
+ api_url_input = gr.Textbox(label="API URL", value=saved_api_url or "https://api.openai.com/v1/chat/completions",
316
+ placeholder="Enter the GPT-4-Vision API URL here")
317
+ api_model_input = gr.Textbox(label="API Model", value="gpt-4o", placeholder="Enter the model name here")
318
+ quality_choices = ["auto", "high", "low"]
319
+ quality = gr.Dropdown(choices=quality_choices, label="Image Quality / 图片质量", value="auto")
320
+ timeout_input = gr.Number(label="Timeout (seconds) / 超时时间(秒)", value=10, step=1)
321
+
322
+ prompt_input = gr.Textbox(label="Prompt / 打标需求",
323
+ value="As an AI image tagging expert, please provide precise tags for these images to enhance CLIP model's understanding of the content. Employ succinct keywords or phrases, steering clear of elaborate sentences and extraneous conjunctions. Prioritize the tags by relevance. Your tags should capture key elements such as the main subject, setting, artistic style, composition, image quality, color tone, filter, and camera specifications, and any other tags crucial for the image. When tagging photos of people, include specific details like gender, nationality, attire, actions, pose, expressions, accessories, makeup, composition type, age, etc. For other image categories, apply appropriate and common descriptive tags as well. Recognize and tag any celebrities, well-known landmark or IPs if clearly featured in the image. Your tags should be accurate, non-duplicative, and within a 20-75 word count range. These tags will use for image re-creation, so the closer the resemblance to the original image, the better the tag quality. Tags should be comma-separated. Exceptional tagging will be rewarded with $10 per image.",
324
+ placeholder="Enter a descriptive prompt",
325
+ lines=5)
326
+
327
+ with gr.Accordion("Prompt Saving / 提示词存档", open=False):
328
+ def update_textbox(prompt):
329
+ return prompt
330
+ saved_pro = get_prompts_from_csv()
331
+ saved_prompts_dropdown = gr.Dropdown(label="Saved Prompts / 提示词存档", choices=saved_pro, type="value",interactive=True)
332
+ with gr.Row():
333
+ save_prompt_button = gr.Button("Save Prompt / 保存提示词")
334
+ delete_prompt_button = gr.Button("Delete Prompt / 删除提示词")
335
+ load_prompt_button = gr.Button("Load Prompt / 读取到输入框")
336
+
337
+ save_prompt_button.click(save_prompt, inputs=prompt_input,outputs=[saved_prompts_dropdown])
338
+ delete_prompt_button.click(delete_prompt, inputs=saved_prompts_dropdown, outputs=[saved_prompts_dropdown])
339
+ load_prompt_button.click(update_textbox, inputs=saved_prompts_dropdown, outputs=prompt_input)
340
+
341
+ with gr.Tab("Image Process / 图片处理"):
342
+
343
+ with gr.Tab("Image Zip / 图像预压缩"):
344
+ with gr.Row():
345
+ folder_path_input = gr.Textbox(
346
+ label="Image Folder Path / 图像文件夹路径",
347
+ placeholder="Enter the folder path containing images / 输入包含图像的文件夹路径"
348
+ )
349
+ process_images_button = gr.Button("Process Images / 压缩图像")
350
+
351
+ with gr.Row():
352
+ # Add a Markdown component to display the warning message
353
+ gr.Markdown("""
354
+ ⚠ **Warning / 警告**: This preprocessing process will resize and compress all image files into jpg format with a total pixel count ≤ 1024×1024 while maintaining the original aspect ratio, ensuring that both dimensions are multiples of 32. **Please make sure to backup your original files before processing!** This procedure can reduce the size of the training set, help to speed up the labeling process, and decrease the time taken to cache latents to disk during training.
355
+
356
+ 本预处理过程将会在保持原图长宽比情况下,把所有图像文件裁剪压缩为总像素≤1024×1024的jpg文件,并且长宽像素均为32的倍数。**请务必在处理前备份源文件!**该过程可以缩小训练集体积,有助于加快打标速度,并缩短训练过程中的Cache latents to disk时间。
357
+ """)
358
+
359
+ with gr.Row():
360
+ image_processing_output = gr.Textbox(
361
+ label="Image Processing Output / 图像处理输出",
362
+ lines=3
363
+ )
364
+
365
+ process_images_button.click(process_images_in_folder,
366
+ inputs=[folder_path_input],
367
+ outputs=[image_processing_output])
368
+
369
+ with gr.Tab("Single Image / 单图处理"):
370
+ with gr.Row():
371
+ image_input = gr.Image(type='filepath', label="Upload Image / 上传图片")
372
+ single_image_output = gr.Textbox(label="Caption Output / 标签输出")
373
+ with gr.Row():
374
+ single_image_submit = gr.Button("Caption Single Image / 图片打标", variant='primary')
375
+
376
+ with gr.Tab("Batch Image / 多图批处理"):
377
+ with gr.Row():
378
+ batch_dir_input = gr.Textbox(label="Batch Directory / 批量目录",
379
+ placeholder="Enter the directory path containing images for batch processing")
380
+ with gr.Row():
381
+ batch_process_submit = gr.Button("Batch Process Images / 批量处理图像", variant='primary')
382
+ with gr.Row():
383
+ batch_output = gr.Textbox(label="Batch Processing Output / 批量输出")
384
+ file_handling_mode = gr.Radio(
385
+ choices=["overwrite/覆盖", "prepend/前置插入", "append/末尾追加", "skip/跳过"],
386
+ value="overwrite/覆盖",
387
+ label="If a caption file exists: / 如果已经存在打标文件: "
388
+ )
389
+ with gr.Row():
390
+ stop_button = gr.Button("Stop Batch Processing / 停止批量处理")
391
+ stop_button.click(stop_batch_processing, inputs=[], outputs=batch_output)
392
+
393
+ with gr.Tab("Failed File Screening / 打标失败文件筛查"):
394
+ folder_input = gr.Textbox(label="Folder Input / 文件夹输入", placeholder="Enter the directory path")
395
+ keywords_input = gr.Textbox(placeholder="Enter keywords, e.g., sorry,error / 请输入检索关键词,例如:sorry,error",
396
+ label="Keywords (optional) / 检索关键词(可选)")
397
+ run_button = gr.Button("Run Script / 运行脚本", variant='primary')
398
+ output_area = gr.Textbox(label="Script Output / 脚本输出")
399
+
400
+ run_button.click(fn=run_script, inputs=[folder_input, keywords_input], outputs=output_area)
401
+
402
+ with gr.Tab("Extra Function / 额外功能"):
403
+
404
+ gr.Markdown("""
405
+ 以下功能基于CogVLM开发(GPT4未经测试),极力推荐使用CogVLM-vqa以达到最佳效果。\n
406
+ This function is developed based on CogVLM (GPT4 not tested), and it is strongly recommended to use CogVLM-vqa for optimal results.
407
+ """)
408
+
409
+ with gr.Tab("Watermark Detection / 批量水印检测"):
410
+ with gr.Row():
411
+ detect_batch_dir_input = gr.Textbox(label="Image Directory / 图片目录",
412
+ placeholder="Enter the directory path containing images for batch processing")
413
+ with gr.Row():
414
+ watermark_dir = gr.Textbox(label="Watermark Detected Image Directory / 检测到水印的图片目录",
415
+ placeholder="Enter the directory path to move/copy detected images")
416
+ detect_file_handling_mode = gr.Radio(choices=["move/移动", "copy/复制"], value="move/移动",
417
+ label="If watermark is detected / 如果图片检测到水印 ")
418
+ with gr.Row():
419
+ batch_detect_submit = gr.Button("Batch Detect Images / 批量检测图像", variant='primary')
420
+ with gr.Row():
421
+ detect_batch_output = gr.Textbox(label="Output / 结果")
422
+ with gr.Row():
423
+ detect_stop_button = gr.Button("Stop Batch Processing / 停止批量处理")
424
+ detect_stop_button.click(stop_batch_processing, inputs=[], outputs=detect_batch_output)
425
+ with gr.Tab("Tag Polishing / 标签润色"):
426
+ gr.Markdown("""
427
+ 使用其他打标器(如WD1.4)对图片进行打标后,在上方prompt中使用“Describe this image in a very detailed manner and refer these prompt tags:{大括号里替换为放置额外tags文件的目录,会自动读取和图片同名txt。比如 D:\ abc\}”\n
428
+ After marking the image using other captioner(such as WD1.4), enter the prompt in the “” marks in the prompt box.
429
+ “Describe this image in a very detailed manner and refer these prompt tags:
430
+ {This is the txt file path for captions, will automatically read the txt file with the same name as the image. For example, D: \ abc\}”
431
+ """)
432
+ with gr.Tab("Image filtering / 图片筛选"):
433
+ gr.Markdown("""
434
+ 使用自定义规则筛选图片,将回答中包含或不包含对应词的图片放入对应规则的文件夹中。输出目录默认在源目录下的classify_output文件夹下。\n
435
+ Use custom rules to filter images. Place images containing or not containing corresponding words in the corresponding rule folder in the answer. Output Directory default in source directory \classify_output.
436
+ """)
437
+ with gr.Row():
438
+ classify_output = gr.Textbox(label="Output / 结果")
439
+ classify_button = gr.Button("Run / 开始", variant='primary')
440
+ classify_stop_button = gr.Button("Stop Batch Processing / 停止批量处理")
441
+ with gr.Row():
442
+ classify_dir = gr.Textbox(label="Input Image Directory / 输入图片目录",placeholder="Enter the directory path")
443
+ classify_output_dir = gr.Textbox(label="Output Directory / 输出目录", placeholder="Default source directory / 默认源目录")
444
+ classify_handling_mode = gr.Radio(label="If meets / 如果符合",choices=["move/移动", "copy/复制"], value="move/移动")
445
+
446
+ rule_inputs = []
447
+ for i in range(1,11):
448
+ with gr.Row():
449
+ rule_type = gr.Dropdown(label="Rule / 规则类型", choices=["","Involve / 包含", "Exclude / 不包含"], value="")
450
+ rule_input = gr.Textbox(label="Custom / 自定义", placeholder="Enter the words you need to filter / 输入你需要筛选的词")
451
+ rule_inputs.extend([rule_type, rule_input])
452
+
453
+ def caption_image(api_key, api_url, prompt, image, quality, timeout, model="gpt-4o"):
454
+ if image:
455
+ return process_single_image(api_key, prompt, api_url, image, quality, timeout, model)
456
+
457
+ def batch_process(api_key, api_url, prompt, batch_dir, file_handling_mode, quality, timeout, model="gpt-4o"):
458
+ process_batch_images(api_key, prompt, api_url, batch_dir, file_handling_mode, quality, timeout, model)
459
+ return "Batch processing complete. Captions saved or updated as '.txt' files next to images."
460
+
461
+ def batch_detect(api_key, api_url, prompt, batch_dir, detect_file_handling_mode, quality, timeout, watermark_dir, model="gpt-4o"):
462
+ results = process_batch_watermark_detection(api_key, prompt, api_url, batch_dir, detect_file_handling_mode,
463
+ quality, timeout,watermark_dir, model)
464
+ return results
465
+
466
+ single_image_submit.click(caption_image,
467
+ inputs=[api_key_input, api_url_input, prompt_input, image_input, quality, timeout_input, api_model_input],
468
+ outputs=single_image_output)
469
+ batch_process_submit.click(batch_process,
470
+ inputs=[api_key_input, api_url_input, prompt_input, batch_dir_input,
471
+ file_handling_mode, quality, timeout_input, api_model_input],
472
+ outputs=batch_output)
473
+ batch_detect_submit.click(batch_detect,
474
+ inputs=[api_key_input, api_url_input, prompt_input, detect_batch_dir_input,
475
+ detect_file_handling_mode, quality, timeout_input, watermark_dir, api_model_input],
476
+ outputs=detect_batch_output)
477
+
478
+ classify_button.click(classify_images,
479
+ inputs=[api_key_input, api_url_input, quality, prompt_input, timeout_input,
480
+ classify_handling_mode, classify_dir, classify_output_dir] + rule_inputs,
481
+ outputs=classify_output)
482
+ classify_stop_button.click(stop_batch_processing,inputs=[],outputs=classify_output)
483
+
484
+ with gr.Tab("Tag Manage / 标签处理"):
485
+
486
+ with gr.Row():
487
+ folder_path_input = gr.Textbox(label="Folder Path / 文件夹路径",
488
+ placeholder="Enter folder path / 在此输入文件夹路径")
489
+ top_n_input = gr.Number(label="Top N Tags / Top N 标签", value=100)
490
+ translate_tags_input = gr.Radio(label="Translate Tags to Chinese / 翻译标签",
491
+ choices=["GPT-3.5 translation / GPT3.5翻译",
492
+ "Free translation / 免费翻译",
493
+ "No translation / 不翻译"],
494
+ value="No translation / 不翻译")
495
+ process_tags_button = gr.Button("Process Tags / 处理标签", variant='primary')
496
+ output_message = gr.Textbox(label="Output Message / 输出信息", interactive=False)
497
+
498
+ with gr.Row():
499
+ tags_to_remove_input = gr.Textbox(label="Tags to Remove / 删除标签",
500
+ placeholder="Enter tags to remove, separated by commas / 输入要删除的标签,用逗号分隔",
501
+ lines=3)
502
+ tags_to_replace_input = gr.Textbox(label="Tags to Replace / 替换标签",
503
+ placeholder="Enter tags to replace in 'old_tag:new_tag' format, separated by commas / 输入要替换的标签,格式为 '旧标签:新标签',用逗号分隔",
504
+ lines=3)
505
+ new_tag_input = gr.Textbox(label="Add New Tag / 添加新标签",
506
+ placeholder="Enter a new tag to add / 输入一个新标签以添加", lines=3)
507
+ insert_position_input = gr.Radio(label="New Tag Insert Position / 新标签插入位置",
508
+ choices=["Start / 开始", "End / 结束", "Random / 随机"],
509
+ value="Start / 开始")
510
+
511
+ with gr.Row():
512
+ wordcloud_output = gr.Image(label="Word Cloud / 词云")
513
+ tag_counts_output = gr.Dataframe(label="Top Tags / 高频标签",
514
+ headers=["Tag Name", "Frequency", "Chinese Translation"],
515
+ interactive=True) # 修改 Dataframe 组件以显示三列
516
+
517
+ with gr.Row():
518
+ network_graph_output = gr.Image(label="Network Graph / 网络图")
519
+
520
+ process_tags_button.click(process_tags,
521
+ inputs=[folder_path_input, top_n_input, tags_to_remove_input,
522
+ tags_to_replace_input, new_tag_input, insert_position_input,
523
+ translate_tags_input, api_key_input, api_url_input], # 新增翻译复选框
524
+ outputs=[tag_counts_output, wordcloud_output, network_graph_output, output_message])
525
+
526
+
527
+ # API Config
528
+ with gr.Tab("API Config / API配置"):
529
+ # 本地模型配置
530
+ with gr.Accordion("Local Model / 使用本地模型", open=True):
531
+ with gr.Row():
532
+ gr.Markdown("""
533
+ ⚠ **Warning / 警告**:
534
+ This is the API configuration page. To use local model, you need to configure environment and download it.
535
+ **Moondream** model **size is about 22g+**, and it takes a long time, Please confirm that the disk space is sufficient.Please confirm that your GPU has sufficient graphics memory ***(approximately 6g)***
536
+ **CogVLM**, you need to configure environment and download it, which is **approximately 35g+** in size and takes a long time ***(really, really long)***.
537
+ After installation and download, the total space occupied is about ***40g+***. Please confirm that the disk space is sufficient.
538
+ In addition, in terms of model selection, the vqa model performs better but slower, while the chat model is faster but slightly weaker.
539
+ Please confirm that your GPU has sufficient graphics memory ***(approximately 14g ±)*** when using CogVLM
540
+
541
+ 此为API配置页面,使用本地模型需要配置相关环境并下载模型,
542
+ ***moondream***模型大小约为**22g+**需要较长时间,请确认磁盘空间充足。显存需求约为6g,请确认自己的显卡有足够的显存。
543
+ ***CogVLM***大小约为**35g+**,需要较长时间 **(真的很长)**。安装以及下载完成后,总占用空间约为40g+,请确认磁盘空间充足。
544
+ 模型选择上,vqa模型效果更好但是更慢,chat模型更快但是效果略弱。使用CogVLM请确认自己的显卡有足够的显存 ***(约14g±)***
545
+ """)
546
+ with gr.Row():
547
+ detecter_output = gr.Textbox(label="Check Env / 环境检测", interactive=False)
548
+ detect_button = gr.Button("Check / 检查", variant='primary')
549
+ with gr.Row():
550
+ models_select = gr.Radio(label="Choose Models / 选择模型", choices=["moondream","vqa", "chat", "minicpm"], value="moondream")
551
+ acceleration_select = gr.Radio(label="Choose Default Plz / 选择是否国内加速(如果使用国内加速,请关闭魔法上网)", choices=["CN", "default"],
552
+ value="CN")
553
+ download_button = gr.Button("Download Models / 下载模型", variant='primary')
554
+ install_button = gr.Button("Install / 安装", variant='primary')
555
+
556
+ # API配置
557
+ mod_list = [
558
+ "GPT4V",
559
+ "qwen-vl-plus",
560
+ "qwen-vl-max",
561
+ "moondream",
562
+ "Cog-vqa",
563
+ "Cog-chat",
564
+ "MiniCPM"
565
+ ]
566
+ with gr.Row():
567
+ switch_select = gr.Dropdown(label="Choose API / 选择API", choices=mod_list, value="GPT4V")
568
+ A_state = gr.Textbox(label="API State / API状态", interactive=False, value=mod_default)
569
+ switch_button = gr.Button("Switch / 切换", variant='primary')
570
+ set_default = gr.Button("Set as default / 设为默认", variant='primary')
571
+
572
+
573
+ detect_button.click(detecter, outputs=detecter_output)
574
+ download_button.click(downloader, inputs=[models_select, acceleration_select],
575
+ outputs=detecter_output)
576
+ install_button.click(installer, outputs=detecter_output)
577
+ switch_button.click(switch_API, inputs=[switch_select, A_state],
578
+ outputs=[api_key_input, api_url_input, timeout_input, A_state])
579
+ set_default.click(save_state, inputs=[switch_select, api_key_input, api_url_input], outputs=A_state)
580
+
581
+
582
+ gr.Markdown("""
583
+ ### Developers: [Jiaye](https://civitai.com/user/jiayev1),  [LEOSAM 是只兔狲](https://civitai.com/user/LEOSAM),  [SleeeepyZhou](https://civitai.com/user/SleeeepyZhou),  [Fok](https://civitai.com/user/fok3827),  [gluttony-10](https://github.com/gluttony-10),  [327](https://github.com/327),  [十字鱼](https://space.bilibili.com/893892)  |  Welcome everyone to add more new features to this project.
584
+ """)
585
+
586
+ # 启动参数
587
+ def get_args():
588
+ parser = argparse.ArgumentParser(description='GPT4V-Image-Captioner启动参数')
589
+ parser.add_argument("--port", type=int, default="8848", help="占用端口,默认8848")
590
+ parser.add_argument("--listen", action='store_true', help="打开远程连接,默认关闭")
591
+ parser.add_argument("--share", action='store_true', help="打开gradio共享,默认关闭")
592
+ parser.add_argument("--no-browser", action='store_true', help="不要自动打开浏览器,默认关闭")
593
+ return parser.parse_args()
594
+
595
+ args = get_args()
596
+
597
+ if __name__ == "__main__":
598
+ threading.Thread(target=lambda: switch_API(mod_default, 'GPT')).start()
599
+ demo.launch(
600
+ server_name="0.0.0.0" if args.listen else None,
601
+ server_port=args.port,
602
+ share=args.share,
603
+ inbrowser=False if args.no_browser else True
604
+ )
.ipynb_checkpoints/install_linux_mac-checkpoint.sh ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Define the Python version
4
+ PYTHON_VERSION=3.10.
5
+
6
+ # Check if Python is installed and the version is as expected
7
+ if ! command -v python3 --version &>/dev/null || ! python3 --version | grep -q "$PYTHON_VERSION"; then
8
+ echo "Python is not installed or not the expected version. Please install Python $PYTHON_VERSION."
9
+ exit 1
10
+ fi
11
+
12
+ echo "Python is installed."
13
+
14
+ # Ping google to decide if use mirror
15
+ target_url="www.google.com"
16
+ timeout=3000
17
+ ping -c 1 -W $timeout $target_url -w 3 > /dev/null
18
+
19
+ if [ $? -ne 0 ]; then
20
+ echo "Use CN"
21
+ export PIP_DISABLE_PIP_VERSION_CHECK=1
22
+ export PIP_NO_CACHE_DIR=1
23
+ export PIP_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple
24
+ else
25
+ echo "Use default"
26
+ fi
27
+
28
+ # Upgrade pip to the latest version
29
+ pip install --upgrade pip
30
+
31
+ # Install necessary Python libraries
32
+ pip install -r ./install_script/requirements.txt
33
+
34
+ echo ""
35
+ echo "Install completed, please run Start to open the GUI"
36
+ echo "安装完毕,请运行Start打开GUI"
37
+ echo ""
38
+ read -p "press any key to continue...
39
+ 按任意键继续..."
.ipynb_checkpoints/start_linux_mac-checkpoint.sh ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ export HF_HOME="huggingface"
3
+
4
+ python ./install_script/check_open.py
5
+
6
+ python gpt-caption.py --share "$@"
7
+
8
+ read -p "Press any key to continue . . . "
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README-CN.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GPT4V-Image-Captioner / GPT4V图像打标器
2
+
3
+ [软件安装&演示视频](https://www.bilibili.com/video/BV1pw411g7X1/?spm_id_from=333.999.0.0&vd_source=22436c5073194cf38787049c34e04e02)
4
+
5
+ [英文版说明](https://github.com/jiayev/GPT4V-Image-Captioner/blob/main/README.md)
6
+
7
+ 现在我们有SDwebUI插件版本[sd-webui-GPT4V-Image-Captioner](https://github.com/SleeeepyZhou/sd-webui-GPT4V-Image-Captioner)。
8
+
9
+ 这是一款使用 Gradio 构建,可使用GPT-4-vision API、阿里云[通义千问VL](https://modelscope.cn/organization/qwen)、[Moondream](https://github.com/vikhyat/moondream)模型 或 [CogVLM](https://github.com/THUDM/CogVLM)模型进行图像打标的多功能图像处理工具箱。特色功能包括:
10
+
11
+ - 一键安装及使用
12
+ - 单图反推及批量打标功能
13
+ - 云端 GPT4V 或 Claude 3 及阿里云[通义千问VL](https://modelscope.cn/organization/qwen) & 本地 [CogVLM](https://github.com/THUDM/CogVLM) 或 [Moondream](https://github.com/vikhyat/moondream)双模型可选
14
+ - 可视化标签分析与处理
15
+ - 图像分桶预压缩
16
+ - 关键词筛查及水印图像识别
17
+ - 图像自定义识别分类
18
+
19
+ 开发者: [Jiaye](https://civitai.com/user/jiayev1), [LEOSAM是只兔狲](https://civitai.com/user/LEOSAM), [SleeeepyZhou](https://space.bilibili.com/360375877), [Fok](https://civitai.com/user/fok3827), GPT4。 欢迎有兴趣的朋友加入,对本项目进行进一步的完善改进。
20
+
21
+
22
+ ![下载](https://github.com/jiayev/GPT4V-Image-Captioner/assets/16369810/90612e2b-aac1-4368-84d6-482bb660f5aa)
23
+
24
+ 要使用Claude 3,只需将API密钥和URL替换为Claude 3的API密钥和URL (/v1/messages),并将模型名称更改为"claude-3-opus"(或sonnet)。
25
+
26
+ # 安装和启动指南
27
+
28
+ ### Windows(如自动安装失败,请参考[手动安装说明](#windows-手动安装说明))
29
+
30
+ 1. 以管理员权限打开命令提示符,并导航到您想要克隆仓库的目录。
31
+ 2. 使用以下命令克隆仓库:
32
+ ```
33
+ git clone https://github.com/jiayev/GPT4V-Image-Captioner
34
+ ```
35
+ 3. 双击 `install_windows.bat` 运行,并安装所有必要的依赖项。
36
+ 4. 安装完成后,您可以通过双击 `start_windows.bat`来在终端中启动GPT4V-Image-Captioner。
37
+ 5. 按住ctrl并点击终端中的URL地址(或复制URL地址在浏览器打开),将在默认浏览器中跳转打开Gradio应用界面。
38
+ 6. 请在界面最上方输入OpenAI官方或者第三方的GPT-4V API Key与API Url,设置图像地址后,就可以图像打标了。
39
+
40
+
41
+ ### Linux / macOS
42
+
43
+ 1. 打开终端,并导航到您想要克隆仓库的目录。
44
+ 2. 使用以下命令克隆仓库:
45
+ ```
46
+ git clone https://github.com/jiayev/GPT4V-Image-Captioner
47
+ ```
48
+ 3. 导航到克隆的目录:
49
+ ```
50
+ cd GPT4V-Image-Captioner
51
+ ```
52
+ 4. 使用以下命令使安装脚本和启动脚本变为可执行:
53
+ ```
54
+ chmod +x install_linux_mac.sh; chmod +x Start_linux_mac.sh
55
+ ```
56
+ 5. 执行安装脚本:
57
+ ```
58
+ ./install_linux_mac.sh
59
+ ```
60
+ 6. 在终端中执行启动脚本来启动GPT4V-Image-Captioner。
61
+ ```
62
+ ./start_linux_mac.sh
63
+ ```
64
+ 7. 复制终端中显示的URL地址,在浏览器中打开Gradio应用界面。
65
+ 8. 请在界面最上方输入OpenAI官方或者第三方的GPT-4V API Key与API Url,设置图像地址后,就可以图像打标了。
66
+
67
+
68
+ ### Windows 手动安装说明
69
+
70
+ 1. 按 `Win + R` 打开命令提示符。键入 `cmd` 然后按 `Enter` 。
71
+
72
+ 2. 使用下面的命令克隆仓库至本地:
73
+ ```
74
+ git clone https://github.com/jiayev/GPT4V-Image-Captioner
75
+ ```
76
+
77
+ 3. 克隆完成后,切换到克隆的目录中:
78
+ ```
79
+ cd GPT4V-Image-Captioner
80
+ ```
81
+
82
+ 4. 在安装依赖库之前,在命令提示符中输入以下命令并按 `Enter` 来检查是否电脑已经安装了 Python:
83
+ ```
84
+ python --version
85
+ ```
86
+ 如果未安装,会显示错误信息。请访问 [Python 官方下载页面](https://www.python.org/downloads/) 并按照指示进行安装。
87
+
88
+ 5. 创建一个名为 `myenv` 的虚拟环境以避免污染全局 Python 环境:
89
+ ```
90
+ python -m venv myenv
91
+ ```
92
+
93
+ 6. 激活你刚创建的虚拟环境:
94
+ ```
95
+ myenv\Scripts\activate
96
+ ```
97
+
98
+ 7. 更新 `pip`至最新版本:
99
+ ```
100
+ python -m pip install --upgrade pip
101
+ ```
102
+
103
+ 8. 在虚拟环境中安装 `requests`、`gradio` 、 `tqdm` 等库:
104
+ ```
105
+ pip install scipy networkx wordcloud matplotlib Pillow tqdm gradio requests
106
+ ```
107
+
108
+ 9. 完成上述步骤后,可通过双击 `Start_windows.bat` 文件来启动 GPT4V-Image-Captioner。
109
+
110
+
111
+ ## 更新内容
112
+
113
+ ### 2024年1月6日
114
+ - **更智能的一键安装**: 增加了更智能的一键安装 (`install_windows.bat`) 功能,国内的小伙伴不用再看着pip十几kb慢慢爬了,更加国际化(×,简化了程序的安装。
115
+ - **CogVLM支持**: 增加了CogVLM模型的一键安装以及切换页面,没有GPT4的小伙伴也可以靠本地多模态快乐玩耍了(穷哥们狂喜。
116
+
117
+ ### 2024年1月2日
118
+ - **一键安装和一键启动**: 增加了一键安装 (`install_windows.bat` / `install_linux_mac.sh`) 和一键启动 (`Start_windows.bat` / `Start_linux_mac.sh`) 功能,简化了程序的安装和启动过程。
119
+ - **环境说明补充**: 补充了在Windows和Linux环境下程序的安装和启动说明。
120
+
121
+ ### 2024年1月1日
122
+ - **运行加速**: 提高了程序的打标速度。现在可以在2-3秒内完成一张图片的标注。
123
+ - **标签处理**: 对于已有标签的图像文件,提供了以下不同处理选项:"覆盖", "前置插入", "结尾追加" 和 "跳过"。
124
+ - **子文件夹处理**: 新程序能够处理文件夹及其子文件夹中的所有图像文件,支持的图像格式包括:'.png', '.jpg', '.jpeg', '.webp', '.bmp', '.gif', '.tiff', '.tif'。
125
+ - **程序中断**: 增加了在批量打标签过程中中断打标的功能。
126
+ - **报错筛查**: 可以根据关键词,将所有GPT标记失败的图像(例如NSFW内容)移动到新的文件夹中。
127
+ - **本地化**: 增加了对中文的支持。
README.md CHANGED
@@ -1,12 +1,111 @@
1
  ---
2
- title: GPT4V Image Captioner
3
- emoji: 📉
4
- colorFrom: green
5
- colorTo: purple
6
  sdk: gradio
7
- sdk_version: 4.32.0
8
- app_file: app.py
9
- pinned: false
10
  ---
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: GPT4V-Image-Captioner
3
+ app_file: gpt-caption.py
 
 
4
  sdk: gradio
5
+ sdk_version: 4.21.0
 
 
6
  ---
7
+ # GPT4V-Image-Captioner / GPT4V图像打标器
8
 
9
+ [中文版说明](https://github.com/jiayev/GPT4V-Image-Captioner/blob/main/README-CN.md)
10
+
11
+ We now have [sd-webui-GPT4V-Image-Captioner](https://github.com/SleeeepyZhou/sd-webui-GPT4V-Image-Captioner) for SD WebUI
12
+
13
+ This is a multifunctional image processing toolbox built with Gradio, capable of tagging images using the GPT-4-vision or Claude 3 API, the [cogVLM](https://github.com/THUDM/CogVLM) model, [Qwen-VL](https://huggingface.co/Qwen)(Alibaba Cloud), the [Moondream](https://github.com/vikhyat/moondream) model.
14
+
15
+ Key features include:
16
+
17
+ - One-click installation and use
18
+ - Single image and multi-image batch tagging
19
+ - Choice of online GPT4V or Claude 3 or [Qwen-VL](https://huggingface.co/Qwen)(Alibaba Cloud) & local CogVLM and Moondream models
20
+ - Visual tag analysis and processing
21
+ - Image pre-compression
22
+ - Keyword filtering and watermark image recognition
23
+
24
+ Developers: [Jiaye](https://civitai.com/user/jiayev1), [LEOSAM是只兔狲](https://civitai.com/user/LEOSAM), [SleeeepyZhou](https://civitai.com/user/SleeeepyZhou), [Fok](https://civitai.com/user/fok3827), GPT4. Welcome everyone to add more new features to this project.
25
+
26
+ ![下载](https://github.com/jiayev/GPT4V-Image-Captioner/assets/16369810/90612e2b-aac1-4368-84d6-482bb660f5aa)
27
+
28
+ ### Please note that the Claude 3 feature is not finished yet.
29
+ To use Claude 3, simply replace the API key and URL with the Claude 3 API key and URL (/v1/messages), and changing the model name to "claude-3-opus" (or sonnet).
30
+
31
+ # Installation and Startup Guide
32
+
33
+ ### Windows (If the automatic installation fails, please refer to the [Manual Installation Instructions](#windows-manual-installation-instructions))
34
+
35
+ 1. Open Command Prompt as administrator and navigate to the directory where you want to clone the repository.
36
+ 2. Clone the repository using the following command:
37
+ ```
38
+ git clone https://github.com/jiayev/GPT4V-Image-Captioner
39
+ ```
40
+ 3. Double-click `install_windows.bat` to run and install all necessary dependencies.
41
+ 4. After the installation is complete, you can launch the GPT4V-Image-Captioner by double-clicking `start_windows.bat`.
42
+ 5. Hold down Ctrl and click on the URL in the terminal (or copy the URL to your browser), which will open the Gradio app interface in your default browser.
43
+ 6. Enter the official OpenAI or third-party GPT-4V API Key and API Url at the top of the interface. After setting the image address, you can start tagging the image.
44
+
45
+ ### Linux / macOS
46
+
47
+ 1. Open a terminal and navigate to the directory where you want to clone the repository.
48
+ 2. Clone the repository using the following command:
49
+ ```
50
+ git clone https://github.com/jiayev/GPT4V-Image-Captioner
51
+ ```
52
+ 3. Navigate to the cloned directory:
53
+ ```
54
+ cd GPT4V-Image-Captioner
55
+ ```
56
+ 4. Make the install and start scripts executable with the following command:
57
+ ```
58
+ chmod +x install_linux_mac.sh; chmod +x start_linux_mac.sh
59
+ ```
60
+ 5. Execute the install script:
61
+ ```
62
+ ./install_linux_mac.sh
63
+ ```
64
+ 6. Launch the GPT4V-Image-Captioner in the terminal by executing the launch script:
65
+ ```
66
+ ./start_linux_mac.sh
67
+ ```
68
+ 7. Copy the URL displayed in the terminal and open it in your browser to access the Gradio app interface.
69
+ 8. Enter the official OpenAI or third-party GPT-4V API Key and API Url at the top of the interface. After setting the image address, you can start tagging the image.
70
+
71
+ ### Windows Manual Installation Instructions
72
+
73
+ 1. Open the Command Prompt by pressing `Win + R`, typing `cmd`, and then pressing `Enter`.
74
+
75
+ 2. Clone the repository to your local machine using the following command:
76
+ ```
77
+ git clone https://github.com/jiayev/GPT4V-Image-Captioner
78
+ ```
79
+
80
+ 3. Once cloning is complete, navigate to the cloned directory:
81
+ ```
82
+ cd GPT4V-Image-Captioner
83
+ ```
84
+
85
+ 4. Before installing any dependencies, make sure that Python is installed on your system. Check for Python's presence by typing the following command and pressing `Enter` in the Command Prompt:
86
+ ```
87
+ python --version
88
+ ```
89
+ If Python is not installed, you will get an error message. In that case, please visit the [Python official download page](https://www.python.org/downloads/) and follow the instructions to install it.
90
+
91
+ 5. Create a virtual environment named `myenv` to avoid contaminating the global Python environment:
92
+ ```
93
+ python -m venv myenv
94
+ ```
95
+
96
+ 6. Activate the virtual environment you just created:
97
+ ```
98
+ myenv\Scripts\activate
99
+ ```
100
+
101
+ 7. Update `pip` to date:
102
+ ```
103
+ python -m pip install --upgrade pip
104
+ ```
105
+
106
+ 8. Install libraries within the virtual environment:
107
+ ```
108
+ pip install scipy networkx wordcloud matplotlib Pillow tqdm gradio requests
109
+ ```
110
+
111
+ 9. After completing the steps above, you can start GPT4V-Image-Captioner by double-clicking the `start_windows.bat` file.
gpt-caption.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import argparse
3
+ import os
4
+ import shutil
5
+ import threading
6
+
7
+ import concurrent.futures
8
+ from tqdm import tqdm
9
+
10
+ import subprocess
11
+ import time
12
+ import requests
13
+ import socket
14
+
15
+ from lib.Img_Processing import process_images_in_folder, run_script
16
+ from lib.Tag_Processor import modify_file_content, process_tags
17
+ from lib.GPT_Prompt import get_prompts_from_csv, save_prompt, delete_prompt
18
+ from lib.Api_Utils import run_openai_api, save_api_details, get_api_details, downloader, installer, save_state, qwen_api_switch
19
+ from lib.Detecter import detecter
20
+
21
+ os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
22
+ mod_default, saved_api_key, saved_api_url = get_api_details()
23
+ SUPPORTED_IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.webp', '.bmp', '.gif', '.tiff', '.tif')
24
+
25
+ # 图像打标
26
+ should_stop = threading.Event()
27
+ def stop_batch_processing():
28
+ should_stop.set()
29
+ return "Attempting to stop batch processing. Please wait for the current image to finish."
30
+
31
+ def process_single_image(api_key, prompt, api_url, image_path, quality, timeout, model="gpt-4o"):
32
+ save_api_details(api_key, api_url)
33
+ caption = run_openai_api(image_path, prompt, api_key, api_url, quality, timeout, model)
34
+ print(caption)
35
+ return caption
36
+
37
+ def process_batch_images(api_key, prompt, api_url, image_dir, file_handling_mode, quality, timeout, model="gpt-4o"):
38
+ should_stop.clear()
39
+ save_api_details(api_key, api_url)
40
+ results = []
41
+
42
+ image_files = []
43
+ for root, dirs, files in os.walk(image_dir):
44
+ for file in files:
45
+ if file.lower().endswith(SUPPORTED_IMAGE_FORMATS):
46
+ image_files.append(os.path.join(root, file))
47
+
48
+ def process_image(filename, file_handling_mode):
49
+ image_path = os.path.join(image_dir, filename)
50
+ base_filename = os.path.splitext(filename)[0]
51
+ caption_filename = f"{base_filename}.txt"
52
+ caption_path = os.path.join(image_dir, caption_filename)
53
+
54
+ if file_handling_mode != "skip/跳过" or not os.path.exists(caption_path):
55
+ caption = run_openai_api(image_path, prompt, api_key, api_url, quality, timeout, model)
56
+
57
+ if caption.startswith("Error:") or caption.startswith("API error:"):
58
+ return handle_error(image_path, caption_path, caption_filename, filename)
59
+ else:
60
+ modify_file_content(caption_path, caption, file_handling_mode)
61
+ return filename, caption_path
62
+ else:
63
+ return filename, "Skipped because caption file already exists."
64
+
65
+ def handle_error(image_path, caption_path, caption_filename, filename):
66
+ parent_dir = os.path.dirname(image_dir)
67
+ error_image_dir = os.path.join(parent_dir, "error_images")
68
+ if not os.path.exists(error_image_dir):
69
+ os.makedirs(error_image_dir)
70
+
71
+ error_image_path = os.path.join(error_image_dir, filename)
72
+ error_caption_path = os.path.join(error_image_dir, caption_filename)
73
+
74
+ try:
75
+ shutil.move(image_path, error_image_path)
76
+ if os.path.exists(caption_path):
77
+ shutil.move(caption_path, error_caption_path)
78
+ return filename, "Error handled and image with its caption moved to error directory."
79
+ except Exception as e:
80
+ return filename, f"An unexpected error occurred while moving {filename} or {caption_filename}: {e}"
81
+
82
+ with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
83
+ futures = {}
84
+ for filename in image_files:
85
+ future = executor.submit(process_image, filename, file_handling_mode)
86
+ futures[future] = filename # 将 future 和 filename 映射起来
87
+ progress = tqdm(total=len(futures), desc="Processing images")
88
+
89
+ try:
90
+ for future in concurrent.futures.as_completed(futures):
91
+ filename = futures[future]
92
+ if should_stop.is_set():
93
+ for f in futures:
94
+ f.cancel()
95
+ print("Batch processing was stopped by the user.")
96
+ break
97
+ try:
98
+ result = future.result()
99
+ except Exception as e:
100
+ result = (filename, f"An exception occurred: {e}")
101
+ print(f"An exception occurred while processing {filename}: {e}")
102
+ results.append(result)
103
+ progress.update(1)
104
+ finally:
105
+ progress.close()
106
+ executor.shutdown(wait=False)
107
+
108
+ print(f"Processing complete. Total images processed: {len(results)}")
109
+ return results
110
+
111
+ def handle_file(image_path, target_path, file_handling_mode):
112
+ try:
113
+ if file_handling_mode[:4] == "copy":
114
+ shutil.copy(image_path, target_path)
115
+ elif file_handling_mode[:4] == "move":
116
+ shutil.move(image_path, target_path)
117
+ except Exception as e:
118
+ print(f"An exception occurred while handling the file {image_path}: {e}")
119
+ return f"Error handling file {image_path}: {e}"
120
+ return
121
+
122
+ def process_batch_watermark_detection(api_key, prompt, api_url, image_dir, detect_file_handling_mode, quality, timeout,
123
+ watermark_dir, model="gpt-4o"):
124
+ should_stop.clear()
125
+ save_api_details(api_key, api_url)
126
+ results = []
127
+ prompt = 'Is image have watermark'
128
+
129
+ image_files = []
130
+ for root, dirs, files in os.walk(image_dir):
131
+ for file in files:
132
+ if file.lower().endswith(SUPPORTED_IMAGE_FORMATS):
133
+ image_files.append(os.path.join(root, file))
134
+
135
+ def process_image(filename, detect_file_handling_mode, watermark_dir):
136
+ image_path = os.path.join(image_dir, filename)
137
+ caption = run_openai_api(image_path, prompt, api_key, api_url, quality, timeout, model)
138
+
139
+ if caption.startswith("Error:") or caption.startswith("API error:"):
140
+ return "error"
141
+
142
+ # EOI是cog迷之误判?
143
+ if 'Yes,' in caption and '\'EOI\'' not in caption:
144
+ target_path = os.path.join(watermark_dir, filename)
145
+ handle_file(filename, watermark_dir, detect_file_handling_mode)
146
+
147
+ with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
148
+ futures = {}
149
+ for filename in image_files:
150
+ future = executor.submit(process_image, filename, detect_file_handling_mode, watermark_dir)
151
+ futures[future] = filename # 将 future 和 filename 映射起来
152
+ progress = tqdm(total=len(futures), desc="Processing images")
153
+
154
+ try:
155
+ for future in concurrent.futures.as_completed(futures):
156
+ filename = futures[future] # 获取正在处理的文件名
157
+ if should_stop.is_set():
158
+ for f in futures:
159
+ f.cancel()
160
+ print("Batch processing was stopped by the user.")
161
+ break
162
+ try:
163
+ result = future.result()
164
+ except Exception as e:
165
+ result = (filename, f"An exception occurred: {e}")
166
+ print(f"An exception occurred while processing {filename}: {e}")
167
+ results.append(result)
168
+ progress.update(1)
169
+ finally:
170
+ progress.close()
171
+ executor.shutdown(wait=False)
172
+
173
+ results = f"Total checked images: {len(results)}"
174
+ return results
175
+
176
+ def classify_images(api_key, api_url, quality, prompt, timeout, detect_file_handling_mode, image_dir, o_dir, *list_r):
177
+
178
+ # 初始化
179
+ should_stop.clear()
180
+ save_api_details(api_key, api_url)
181
+ results = []
182
+
183
+ # 检查输入
184
+ if not os.path.exists(image_dir):
185
+ return "Error: Image directory does not exist. / 错误:图片目录不存在"
186
+ if not o_dir:
187
+ o_dir = os.path.join(image_dir, "classify_output")
188
+ if not os.path.exists(o_dir):
189
+ os.makedirs(o_dir)
190
+
191
+ # 获取图像
192
+ image_files = []
193
+ for root, dirs, files in os.walk(image_dir):
194
+ for file in files:
195
+ if file.lower().endswith(SUPPORTED_IMAGE_FORMATS):
196
+ image_files.append(os.path.join(root, file))
197
+
198
+ # 转换列表
199
+ rules = []
200
+ for i in range(0, len(list_r), 2):
201
+ rule_type = list_r[i]
202
+ rule_input = list_r[i + 1]
203
+ if rule_type and rule_input:
204
+ rule_type_bool = rule_type == "Involve / 包含"
205
+ rules.append((rule_type_bool, rule_input))
206
+ if rules == []:
207
+ return "Error: All rules are empty. / 错误:未设置规则"
208
+
209
+ # 图像处理
210
+ def process_image(filename, rules, detect_file_handling_mode, image_dir, o_dir, model="gpt-4o"):
211
+ image_path = os.path.join(image_dir, filename)
212
+ caption = run_openai_api(image_path, prompt, api_key, api_url, quality, timeout, model)
213
+
214
+ if caption.startswith("Error:") or caption.startswith("API error:"):
215
+ return "error"
216
+
217
+ matching_rules = []
218
+ for rule_bool, rule_input in rules:
219
+ if (rule_bool and rule_input in caption) or (not rule_bool and rule_input not in caption):
220
+ matching_rules.append(rule_input)
221
+
222
+ if matching_rules:
223
+ folder_name = "-".join(matching_rules)
224
+ target_folder = os.path.join(o_dir, folder_name)
225
+ os.makedirs(target_folder, exist_ok=True)
226
+ handle_file(filename, target_folder, detect_file_handling_mode)
227
+ elif matching_rules == []:
228
+ no_match_folder = os.path.join(o_dir, "no_match")
229
+ os.makedirs(no_match_folder, exist_ok=True)
230
+ handle_file(filename, no_match_folder, detect_file_handling_mode)
231
+
232
+ # 批量处理
233
+ with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
234
+ futures = {}
235
+ for filename in image_files:
236
+ future = executor.submit(process_image, filename, rules, detect_file_handling_mode, image_dir, o_dir)
237
+ futures[future] = filename # 将 future 和 filename 映射起来
238
+ progress = tqdm(total=len(futures), desc="Processing images")
239
+
240
+ try:
241
+ for future in concurrent.futures.as_completed(futures):
242
+ filename = futures[future] # 获取正在处理的文件名
243
+
244
+ if should_stop.is_set():
245
+ for f in futures:
246
+ f.cancel()
247
+ print("Batch processing was stopped by the user.")
248
+ break
249
+
250
+ try:
251
+ result = future.result()
252
+ except Exception as e:
253
+ result = (filename, f"An exception occurred: {e}")
254
+ print(f"An exception occurred while processing {filename}: {e}")
255
+ results.append(result)
256
+ progress.update(1)
257
+
258
+
259
+ finally:
260
+ progress.close()
261
+ executor.shutdown(wait=False)
262
+
263
+ results = f"Total checked images: {len(results)}"
264
+ return results
265
+
266
+ # api
267
+ def switch_API(api, state):
268
+ def is_connection():
269
+ try:
270
+ socket.create_connection(("127.0.0.1", 8000), timeout=1)
271
+ print("API has started.")
272
+ return True
273
+ except (socket.timeout, ConnectionRefusedError):
274
+ return False
275
+ if api[:3] == 'GPT' or api[:4] == "qwen":
276
+ if is_connection():
277
+ requests.post(f"http://127.0.0.1:8000/v1/close")
278
+ key = saved_api_key
279
+ url = saved_api_url
280
+ time_out = 100
281
+ if api[:4] == "qwen" and url.endswith("/v1/services/aigc/multimodal-generation/generation"):
282
+ mod = qwen_api_switch(api)
283
+ else:
284
+ mod = 'GPT4V'
285
+ s_state = mod
286
+
287
+ elif api[:3] == 'Cog' or api[:4] == "moon" or api[:7] == "MiniCPM":
288
+ if is_connection():
289
+ if state != api:
290
+ requests.post(f"http://127.0.0.1:8000/v1/{api}")
291
+ else:
292
+ API_command = f'python openai_api.py --mod {api}'
293
+ subprocess.Popen(API_command,shell=True)
294
+ while True:
295
+ if is_connection():
296
+ break
297
+ else:
298
+ print("Retrying...")
299
+ time.sleep(2)
300
+
301
+ key = ""
302
+ url = "http://127.0.0.1:8000/v1/chat/completions"
303
+ time_out = 300
304
+ s_state = api
305
+
306
+ return key, url, time_out, s_state
307
+
308
+ # UI界面
309
+ with gr.Blocks(title="GPT4V captioner") as demo:
310
+ gr.Markdown("### Image Captioning with GPT-4-Vision API / 使用 GPT-4-Vision API 进行图像打标")
311
+
312
+ with gr.Row():
313
+ api_key_input = gr.Textbox(label="API Key", placeholder="Enter your GPT-4-Vision API Key here", type="password",
314
+ value=saved_api_key)
315
+ api_url_input = gr.Textbox(label="API URL", value=saved_api_url or "https://api.openai.com/v1/chat/completions",
316
+ placeholder="Enter the GPT-4-Vision API URL here")
317
+ api_model_input = gr.Textbox(label="API Model", value="gpt-4o", placeholder="Enter the model name here")
318
+ quality_choices = ["auto", "high", "low"]
319
+ quality = gr.Dropdown(choices=quality_choices, label="Image Quality / 图片质量", value="auto")
320
+ timeout_input = gr.Number(label="Timeout (seconds) / 超时时间(秒)", value=10, step=1)
321
+
322
+ prompt_input = gr.Textbox(label="Prompt / 打标需求",
323
+ value="As an AI image tagging expert, please provide precise tags for these images to enhance CLIP model's understanding of the content. Employ succinct keywords or phrases, steering clear of elaborate sentences and extraneous conjunctions. Prioritize the tags by relevance. Your tags should capture key elements such as the main subject, setting, artistic style, composition, image quality, color tone, filter, and camera specifications, and any other tags crucial for the image. When tagging photos of people, include specific details like gender, nationality, attire, actions, pose, expressions, accessories, makeup, composition type, age, etc. For other image categories, apply appropriate and common descriptive tags as well. Recognize and tag any celebrities, well-known landmark or IPs if clearly featured in the image. Your tags should be accurate, non-duplicative, and within a 20-75 word count range. These tags will use for image re-creation, so the closer the resemblance to the original image, the better the tag quality. Tags should be comma-separated. Exceptional tagging will be rewarded with $10 per image.",
324
+ placeholder="Enter a descriptive prompt",
325
+ lines=5)
326
+
327
+ with gr.Accordion("Prompt Saving / 提示词存档", open=False):
328
+ def update_textbox(prompt):
329
+ return prompt
330
+ saved_pro = get_prompts_from_csv()
331
+ saved_prompts_dropdown = gr.Dropdown(label="Saved Prompts / 提示词存档", choices=saved_pro, type="value",interactive=True)
332
+ with gr.Row():
333
+ save_prompt_button = gr.Button("Save Prompt / 保存提示词")
334
+ delete_prompt_button = gr.Button("Delete Prompt / 删除提示词")
335
+ load_prompt_button = gr.Button("Load Prompt / 读取到输入框")
336
+
337
+ save_prompt_button.click(save_prompt, inputs=prompt_input,outputs=[saved_prompts_dropdown])
338
+ delete_prompt_button.click(delete_prompt, inputs=saved_prompts_dropdown, outputs=[saved_prompts_dropdown])
339
+ load_prompt_button.click(update_textbox, inputs=saved_prompts_dropdown, outputs=prompt_input)
340
+
341
+ with gr.Tab("Image Process / 图片处理"):
342
+
343
+ with gr.Tab("Image Zip / 图像预压缩"):
344
+ with gr.Row():
345
+ folder_path_input = gr.Textbox(
346
+ label="Image Folder Path / 图像文件夹路径",
347
+ placeholder="Enter the folder path containing images / 输入包含图像的文件夹路径"
348
+ )
349
+ process_images_button = gr.Button("Process Images / 压缩图像")
350
+
351
+ with gr.Row():
352
+ # Add a Markdown component to display the warning message
353
+ gr.Markdown("""
354
+ ⚠ **Warning / 警告**: This preprocessing process will resize and compress all image files into jpg format with a total pixel count ≤ 1024×1024 while maintaining the original aspect ratio, ensuring that both dimensions are multiples of 32. **Please make sure to backup your original files before processing!** This procedure can reduce the size of the training set, help to speed up the labeling process, and decrease the time taken to cache latents to disk during training.
355
+
356
+ 本预处理过程将会在保持原图长宽比情况下,把所有图像文件裁剪压缩为总像素≤1024×1024的jpg文件,并且长宽像素均为32的倍数。**请务必在处理前备份源文件!**该过程可以缩小训练集体积,有助于加快打标速度,并缩短训练过程中的Cache latents to disk时间。
357
+ """)
358
+
359
+ with gr.Row():
360
+ image_processing_output = gr.Textbox(
361
+ label="Image Processing Output / 图像处理输出",
362
+ lines=3
363
+ )
364
+
365
+ process_images_button.click(process_images_in_folder,
366
+ inputs=[folder_path_input],
367
+ outputs=[image_processing_output])
368
+
369
+ with gr.Tab("Single Image / 单图处理"):
370
+ with gr.Row():
371
+ image_input = gr.Image(type='filepath', label="Upload Image / 上传图片")
372
+ single_image_output = gr.Textbox(label="Caption Output / 标签输出")
373
+ with gr.Row():
374
+ single_image_submit = gr.Button("Caption Single Image / 图片打标", variant='primary')
375
+
376
+ with gr.Tab("Batch Image / 多图批处理"):
377
+ with gr.Row():
378
+ batch_dir_input = gr.Textbox(label="Batch Directory / 批量目录",
379
+ placeholder="Enter the directory path containing images for batch processing")
380
+ with gr.Row():
381
+ batch_process_submit = gr.Button("Batch Process Images / 批量处理图像", variant='primary')
382
+ with gr.Row():
383
+ batch_output = gr.Textbox(label="Batch Processing Output / 批量输出")
384
+ file_handling_mode = gr.Radio(
385
+ choices=["overwrite/覆盖", "prepend/前置插入", "append/末尾追加", "skip/跳过"],
386
+ value="overwrite/覆盖",
387
+ label="If a caption file exists: / 如果已经存在打标文件: "
388
+ )
389
+ with gr.Row():
390
+ stop_button = gr.Button("Stop Batch Processing / 停止批量处理")
391
+ stop_button.click(stop_batch_processing, inputs=[], outputs=batch_output)
392
+
393
+ with gr.Tab("Failed File Screening / 打标失败文件筛查"):
394
+ folder_input = gr.Textbox(label="Folder Input / 文件夹输入", placeholder="Enter the directory path")
395
+ keywords_input = gr.Textbox(placeholder="Enter keywords, e.g., sorry,error / 请输入检索关键词,例如:sorry,error",
396
+ label="Keywords (optional) / 检索关键词(可选)")
397
+ run_button = gr.Button("Run Script / 运行脚本", variant='primary')
398
+ output_area = gr.Textbox(label="Script Output / 脚本输出")
399
+
400
+ run_button.click(fn=run_script, inputs=[folder_input, keywords_input], outputs=output_area)
401
+
402
+ with gr.Tab("Extra Function / 额外功能"):
403
+
404
+ gr.Markdown("""
405
+ 以下功能基于CogVLM开发(GPT4未经测试),极力推荐使用CogVLM-vqa以达到最佳效果。\n
406
+ This function is developed based on CogVLM (GPT4 not tested), and it is strongly recommended to use CogVLM-vqa for optimal results.
407
+ """)
408
+
409
+ with gr.Tab("Watermark Detection / 批量水印检测"):
410
+ with gr.Row():
411
+ detect_batch_dir_input = gr.Textbox(label="Image Directory / 图片目录",
412
+ placeholder="Enter the directory path containing images for batch processing")
413
+ with gr.Row():
414
+ watermark_dir = gr.Textbox(label="Watermark Detected Image Directory / 检测到水印的图片目录",
415
+ placeholder="Enter the directory path to move/copy detected images")
416
+ detect_file_handling_mode = gr.Radio(choices=["move/移动", "copy/复制"], value="move/移动",
417
+ label="If watermark is detected / 如果图片检测到水印 ")
418
+ with gr.Row():
419
+ batch_detect_submit = gr.Button("Batch Detect Images / 批量检测图像", variant='primary')
420
+ with gr.Row():
421
+ detect_batch_output = gr.Textbox(label="Output / 结果")
422
+ with gr.Row():
423
+ detect_stop_button = gr.Button("Stop Batch Processing / 停止批量处理")
424
+ detect_stop_button.click(stop_batch_processing, inputs=[], outputs=detect_batch_output)
425
+ with gr.Tab("Tag Polishing / 标签润色"):
426
+ gr.Markdown("""
427
+ 使用其他打标器(如WD1.4)对图片进行打标后,在上方prompt中使用“Describe this image in a very detailed manner and refer these prompt tags:{大括号里替换为放置额外tags文件的目录,会自动读取和图片同名txt。比如 D:\ abc\}”\n
428
+ After marking the image using other captioner(such as WD1.4), enter the prompt in the “” marks in the prompt box.
429
+ “Describe this image in a very detailed manner and refer these prompt tags:
430
+ {This is the txt file path for captions, will automatically read the txt file with the same name as the image. For example, D: \ abc\}”
431
+ """)
432
+ with gr.Tab("Image filtering / 图片筛选"):
433
+ gr.Markdown("""
434
+ 使用自定义规则筛选图片,将回答中包含或不包含对应词的图片放入对应规则的文件夹中。输出目录默认在源目录下的classify_output文件夹下。\n
435
+ Use custom rules to filter images. Place images containing or not containing corresponding words in the corresponding rule folder in the answer. Output Directory default in source directory \classify_output.
436
+ """)
437
+ with gr.Row():
438
+ classify_output = gr.Textbox(label="Output / 结果")
439
+ classify_button = gr.Button("Run / 开始", variant='primary')
440
+ classify_stop_button = gr.Button("Stop Batch Processing / 停止批量处理")
441
+ with gr.Row():
442
+ classify_dir = gr.Textbox(label="Input Image Directory / 输入图片目录",placeholder="Enter the directory path")
443
+ classify_output_dir = gr.Textbox(label="Output Directory / 输出目录", placeholder="Default source directory / 默认源目录")
444
+ classify_handling_mode = gr.Radio(label="If meets / 如果符合",choices=["move/移动", "copy/复制"], value="move/移动")
445
+
446
+ rule_inputs = []
447
+ for i in range(1,11):
448
+ with gr.Row():
449
+ rule_type = gr.Dropdown(label="Rule / 规则类型", choices=["","Involve / 包含", "Exclude / 不包含"], value="")
450
+ rule_input = gr.Textbox(label="Custom / 自定义", placeholder="Enter the words you need to filter / 输入你需要筛选的词")
451
+ rule_inputs.extend([rule_type, rule_input])
452
+
453
+ def caption_image(api_key, api_url, prompt, image, quality, timeout, model="gpt-4o"):
454
+ if image:
455
+ return process_single_image(api_key, prompt, api_url, image, quality, timeout, model)
456
+
457
+ def batch_process(api_key, api_url, prompt, batch_dir, file_handling_mode, quality, timeout, model="gpt-4o"):
458
+ process_batch_images(api_key, prompt, api_url, batch_dir, file_handling_mode, quality, timeout, model)
459
+ return "Batch processing complete. Captions saved or updated as '.txt' files next to images."
460
+
461
+ def batch_detect(api_key, api_url, prompt, batch_dir, detect_file_handling_mode, quality, timeout, watermark_dir, model="gpt-4o"):
462
+ results = process_batch_watermark_detection(api_key, prompt, api_url, batch_dir, detect_file_handling_mode,
463
+ quality, timeout,watermark_dir, model)
464
+ return results
465
+
466
+ single_image_submit.click(caption_image,
467
+ inputs=[api_key_input, api_url_input, prompt_input, image_input, quality, timeout_input, api_model_input],
468
+ outputs=single_image_output)
469
+ batch_process_submit.click(batch_process,
470
+ inputs=[api_key_input, api_url_input, prompt_input, batch_dir_input,
471
+ file_handling_mode, quality, timeout_input, api_model_input],
472
+ outputs=batch_output)
473
+ batch_detect_submit.click(batch_detect,
474
+ inputs=[api_key_input, api_url_input, prompt_input, detect_batch_dir_input,
475
+ detect_file_handling_mode, quality, timeout_input, watermark_dir, api_model_input],
476
+ outputs=detect_batch_output)
477
+
478
+ classify_button.click(classify_images,
479
+ inputs=[api_key_input, api_url_input, quality, prompt_input, timeout_input,
480
+ classify_handling_mode, classify_dir, classify_output_dir] + rule_inputs,
481
+ outputs=classify_output)
482
+ classify_stop_button.click(stop_batch_processing,inputs=[],outputs=classify_output)
483
+
484
+ with gr.Tab("Tag Manage / 标签处理"):
485
+
486
+ with gr.Row():
487
+ folder_path_input = gr.Textbox(label="Folder Path / 文件夹路径",
488
+ placeholder="Enter folder path / 在此输入文件夹路径")
489
+ top_n_input = gr.Number(label="Top N Tags / Top N 标签", value=100)
490
+ translate_tags_input = gr.Radio(label="Translate Tags to Chinese / 翻译标签",
491
+ choices=["GPT-3.5 translation / GPT3.5翻译",
492
+ "Free translation / 免费翻译",
493
+ "No translation / 不翻译"],
494
+ value="No translation / 不翻译")
495
+ process_tags_button = gr.Button("Process Tags / 处理标签", variant='primary')
496
+ output_message = gr.Textbox(label="Output Message / 输出信息", interactive=False)
497
+
498
+ with gr.Row():
499
+ tags_to_remove_input = gr.Textbox(label="Tags to Remove / 删除标签",
500
+ placeholder="Enter tags to remove, separated by commas / 输入要删除的标签,用逗号分隔",
501
+ lines=3)
502
+ tags_to_replace_input = gr.Textbox(label="Tags to Replace / 替换标签",
503
+ placeholder="Enter tags to replace in 'old_tag:new_tag' format, separated by commas / 输入要替换的标签,格式为 '旧标签:新标签',用逗号分隔",
504
+ lines=3)
505
+ new_tag_input = gr.Textbox(label="Add New Tag / 添加新标签",
506
+ placeholder="Enter a new tag to add / 输入一个新标签以添加", lines=3)
507
+ insert_position_input = gr.Radio(label="New Tag Insert Position / 新标签插入位置",
508
+ choices=["Start / 开始", "End / 结束", "Random / 随机"],
509
+ value="Start / 开始")
510
+
511
+ with gr.Row():
512
+ wordcloud_output = gr.Image(label="Word Cloud / 词云")
513
+ tag_counts_output = gr.Dataframe(label="Top Tags / 高频标签",
514
+ headers=["Tag Name", "Frequency", "Chinese Translation"],
515
+ interactive=True) # 修改 Dataframe 组件以显示三列
516
+
517
+ with gr.Row():
518
+ network_graph_output = gr.Image(label="Network Graph / 网络图")
519
+
520
+ process_tags_button.click(process_tags,
521
+ inputs=[folder_path_input, top_n_input, tags_to_remove_input,
522
+ tags_to_replace_input, new_tag_input, insert_position_input,
523
+ translate_tags_input, api_key_input, api_url_input], # 新增翻译复选框
524
+ outputs=[tag_counts_output, wordcloud_output, network_graph_output, output_message])
525
+
526
+
527
+ # API Config
528
+ with gr.Tab("API Config / API配置"):
529
+ # 本地模型配置
530
+ with gr.Accordion("Local Model / 使用本地模型", open=True):
531
+ with gr.Row():
532
+ gr.Markdown("""
533
+ ⚠ **Warning / 警告**:
534
+ This is the API configuration page. To use local model, you need to configure environment and download it.
535
+ **Moondream** model **size is about 22g+**, and it takes a long time, Please confirm that the disk space is sufficient.Please confirm that your GPU has sufficient graphics memory ***(approximately 6g)***
536
+ **CogVLM**, you need to configure environment and download it, which is **approximately 35g+** in size and takes a long time ***(really, really long)***.
537
+ After installation and download, the total space occupied is about ***40g+***. Please confirm that the disk space is sufficient.
538
+ In addition, in terms of model selection, the vqa model performs better but slower, while the chat model is faster but slightly weaker.
539
+ Please confirm that your GPU has sufficient graphics memory ***(approximately 14g ±)*** when using CogVLM
540
+
541
+ 此为API配置页面,使用本地模型需要配置相关环境并下载模型,
542
+ ***moondream***模型大小约为**22g+**需要较长时间,请确认磁盘空间充足。显存需求约为6g,请确认自己的显卡有足够的显存。
543
+ ***CogVLM***大小约为**35g+**,需要较长时间 **(真的很长)**。安装以及下载完成后,总占用空间约为40g+,请确认磁盘空间充足。
544
+ 模型选择上,vqa模型效果更好但是更慢,chat模型更快但是效果略弱。使用CogVLM请确认自己的显卡有足够的显存 ***(约14g±)***
545
+ """)
546
+ with gr.Row():
547
+ detecter_output = gr.Textbox(label="Check Env / 环境检测", interactive=False)
548
+ detect_button = gr.Button("Check / 检查", variant='primary')
549
+ with gr.Row():
550
+ models_select = gr.Radio(label="Choose Models / 选择模型", choices=["moondream","vqa", "chat", "minicpm"], value="moondream")
551
+ acceleration_select = gr.Radio(label="Choose Default Plz / 选择是否国内加速(如果使用国内加速,请关闭魔法上网)", choices=["CN", "default"],
552
+ value="CN")
553
+ download_button = gr.Button("Download Models / 下载模型", variant='primary')
554
+ install_button = gr.Button("Install / 安装", variant='primary')
555
+
556
+ # API配置
557
+ mod_list = [
558
+ "GPT4V",
559
+ "qwen-vl-plus",
560
+ "qwen-vl-max",
561
+ "moondream",
562
+ "Cog-vqa",
563
+ "Cog-chat",
564
+ "MiniCPM"
565
+ ]
566
+ with gr.Row():
567
+ switch_select = gr.Dropdown(label="Choose API / 选择API", choices=mod_list, value="GPT4V")
568
+ A_state = gr.Textbox(label="API State / API状态", interactive=False, value=mod_default)
569
+ switch_button = gr.Button("Switch / 切换", variant='primary')
570
+ set_default = gr.Button("Set as default / 设为默认", variant='primary')
571
+
572
+
573
+ detect_button.click(detecter, outputs=detecter_output)
574
+ download_button.click(downloader, inputs=[models_select, acceleration_select],
575
+ outputs=detecter_output)
576
+ install_button.click(installer, outputs=detecter_output)
577
+ switch_button.click(switch_API, inputs=[switch_select, A_state],
578
+ outputs=[api_key_input, api_url_input, timeout_input, A_state])
579
+ set_default.click(save_state, inputs=[switch_select, api_key_input, api_url_input], outputs=A_state)
580
+
581
+
582
+ gr.Markdown("""
583
+ ### Developers: [Jiaye](https://civitai.com/user/jiayev1),&nbsp;&nbsp;[LEOSAM 是只兔狲](https://civitai.com/user/LEOSAM),&nbsp;&nbsp;[SleeeepyZhou](https://civitai.com/user/SleeeepyZhou),&nbsp;&nbsp;[Fok](https://civitai.com/user/fok3827),&nbsp;&nbsp;[gluttony-10](https://github.com/gluttony-10),&nbsp;&nbsp;[327](https://github.com/327),&nbsp;&nbsp;[十字鱼](https://space.bilibili.com/893892)&nbsp;&nbsp;|&nbsp;&nbsp;Welcome everyone to add more new features to this project.
584
+ """)
585
+
586
+ # 启动参数
587
+ def get_args():
588
+ parser = argparse.ArgumentParser(description='GPT4V-Image-Captioner启动参数')
589
+ parser.add_argument("--port", type=int, default="8848", help="占用端口,默认8848")
590
+ parser.add_argument("--listen", action='store_true', help="打开远程连接,默认关闭")
591
+ parser.add_argument("--share", action='store_true', help="打开gradio共享,默认关闭")
592
+ parser.add_argument("--no-browser", action='store_true', help="不要自动打开浏览器,默认关闭")
593
+ return parser.parse_args()
594
+
595
+ args = get_args()
596
+
597
+ if __name__ == "__main__":
598
+ threading.Thread(target=lambda: switch_API(mod_default, 'GPT')).start()
599
+ demo.launch(
600
+ server_name="0.0.0.0" if args.listen else None,
601
+ server_port=args.port,
602
+ share=args.share,
603
+ inbrowser=False if args.no_browser else True
604
+ )
install_linux_mac.sh ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Define the Python version
4
+ PYTHON_VERSION=3.10.
5
+
6
+ # Check if Python is installed and the version is as expected
7
+ if ! command -v python3 --version &>/dev/null || ! python3 --version | grep -q "$PYTHON_VERSION"; then
8
+ echo "Python is not installed or not the expected version. Please install Python $PYTHON_VERSION."
9
+ exit 1
10
+ fi
11
+
12
+ echo "Python is installed."
13
+
14
+ # Ping google to decide if use mirror
15
+ target_url="www.google.com"
16
+ timeout=3000
17
+ ping -c 1 -W $timeout $target_url -w 3 > /dev/null
18
+
19
+ if [ $? -ne 0 ]; then
20
+ echo "Use CN"
21
+ export PIP_DISABLE_PIP_VERSION_CHECK=1
22
+ export PIP_NO_CACHE_DIR=1
23
+ export PIP_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple
24
+ else
25
+ echo "Use default"
26
+ fi
27
+
28
+ # Upgrade pip to the latest version
29
+ pip install --upgrade pip
30
+
31
+ # Install necessary Python libraries
32
+ pip install -r ./install_script/requirements.txt
33
+
34
+ echo ""
35
+ echo "Install completed, please run Start to open the GUI"
36
+ echo "安装完毕,请运行Start打开GUI"
37
+ echo ""
38
+ read -p "press any key to continue...
39
+ 按任意键继续..."
install_script/check.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ bitsandbytes
4
+ deepspeed
5
+ transformers
6
+ spacy
7
+ seaborn
8
+ loguru
9
+ streamlit
10
+ timm
11
+ accelerate
12
+ pydantic
13
+ xformers
14
+ requests
15
+ openai
16
+ fastapi
17
+ httpx
18
+ uvicorn
19
+ dashscope
install_script/check_open.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ import subprocess
3
+
4
+ def install_detection(requir_path):
5
+ # 读
6
+ file_path = requir_path
7
+ requirements = []
8
+ with open(file_path, 'r') as file:
9
+ for line in file:
10
+ requirements.append(line.strip())
11
+
12
+ # 查
13
+ missing_libs = []
14
+ for libs in requirements:
15
+ if libs.find("==") == -1: #only fix requirements which contain "==", because I don't know how to take "<=",">="... into account at the same time.
16
+ check_libs = libs
17
+ else:
18
+ check_libs = libs[:libs.index("==")]
19
+ if check_libs == "Pillow": #import PIL instead of import Pillow
20
+ check_libs = "PIL"
21
+ try:
22
+ importlib.import_module(check_libs)
23
+ except ImportError:
24
+ if check_libs == "PIL": #switch back
25
+ check_libs = "Pillow"
26
+ missing_libs.append(check_libs)
27
+
28
+ return missing_libs
29
+
30
+ def print_missing(missing_libs):
31
+ # 返
32
+ if missing_libs == []:
33
+ return ""
34
+ else:
35
+ return f"Not installed libraries: {', '.join(missing_libs)}"
36
+
37
+ # 启动检查
38
+ def check_open():
39
+ require_path = "./install_script/requirements.txt"
40
+ missings = install_detection(require_path)
41
+ installed = print_missing(missings)
42
+ if installed == "":
43
+ return
44
+ else:
45
+ print(installed)
46
+ for lib in missings:
47
+ subprocess.check_call(["pip", "install", lib])
48
+
49
+ if __name__ == "__main__":
50
+ check_open()
install_script/deepspeed-0.11.2+8ce7471-py3-none-any.whl ADDED
Binary file (758 kB). View file
 
install_script/installcog.bat ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+
3
+ call myenv\Scripts\activate
4
+
5
+ set HF_HOME=huggingface
6
+ REM ͨ���ٶȼ����������ʹ�þ���
7
+ set "target_url=www.google.com"
8
+ set "timeout=4000"
9
+
10
+ ping %target_url% -n 1 -w %timeout% >nul
11
+ if %ERRORLEVEL% neq 0 (
12
+ echo Use CN
13
+ echo ��װ����
14
+ set PIP_DISABLE_PIP_VERSION_CHECK=1
15
+ set PIP_NO_CACHE_DIR=1
16
+ set PIP_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple
17
+
18
+ echo ��װ torch...
19
+ pip install torch==2.2.1+cu121 torchvision==0.17.1+cu121 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple
20
+
21
+ ) else (
22
+ echo Use default
23
+ echo Installing deps...
24
+ pip install torch==2.2.1+cu121 torchvision==0.17.1+cu121 -i https://download.pytorch.org/whl/cu121
25
+ )
26
+
27
+ if %ERRORLEVEL% neq 0 (
28
+ echo torch install failed / torch ��װʧ�� > install_temp.txt
29
+ pause >nul
30
+ exit /b 1
31
+ )
32
+
33
+
34
+ pip install ./install_script/deepspeed-0.11.2+8ce7471-py3-none-any.whl
35
+ pip install -U -I --no-deps xformers==0.0.25
36
+ pip install -r ./install_script/require.txt
37
+ if %ERRORLEVEL% neq 0 (
38
+ echo Deps install failed / ������װʧ�� > install_temp.txt
39
+ pause >nul
40
+ exit /b 1
41
+ )
42
+
43
+ echo Install completed / ��װ��� > install_temp.txt
install_script/installcog.sh ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ source myenv/bin/activate
4
+
5
+ export HF_HOME="huggingface"
6
+
7
+ target_url="www.google.com"
8
+ timeout=4000
9
+ ping -c 1 -W $timeout $target_url -w 4 > /dev/null
10
+
11
+ if [ $? -ne 0 ]; then
12
+ echo "Use CN"
13
+ echo "安装依赖"
14
+
15
+ export PIP_DISABLE_PIP_VERSION_CHECK=1
16
+ export PIP_NO_CACHE_DIR=1
17
+ export PIP_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple
18
+
19
+ echo "安装 torch..."
20
+ pip install torch==2.2.1+cu121 torchvision==0.17.1+cu121 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple
21
+ if [ $? -ne 0 ]; then
22
+ echo "torch 安装失败" > install_temp.txt
23
+ exit 1
24
+ fi
25
+
26
+ else
27
+ echo "Use default"
28
+ echo "Installing deps..."
29
+ pip install torch==2.2.1+cu121 torchvision==0.17.1+cu121 --extra-index-url https://download.pytorch.org/whl/cu121
30
+ fi
31
+
32
+ pip install deepspeed
33
+ pip install -U -I --no-deps xformers==0.0.25
34
+ pip install -r ./install_script/require.txt
35
+ if [ $? -ne 0 ]; then
36
+ echo "Deps install failed / 依赖安装失败" > install_temp.txt
37
+ exit 1
38
+ fi
39
+
40
+ echo "Install completed / 安装完毕" > install_temp.txt
install_script/require.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SwissArmyTransformer>=0.4.9
2
+ transformers==4.37.2
3
+ spacy>=3.6.0
4
+ seaborn>=0.13.0
5
+ loguru~=0.7.2
6
+ streamlit>=1.29.0
7
+ timm>=0.9.12
8
+ accelerate==0.26.1
9
+ pydantic>=2.5.2
10
+
11
+ requests
12
+ openai>=1.4.0
13
+ fastapi>=0.105.0
14
+ httpx>=0.25.2
15
+ uvicorn~=0.24.0
16
+ einops==0.7.0
17
+ protobuf==4.25.2
18
+ sentencepiece==0.1.99
19
+ bitsandbytes==0.43.0
install_script/requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ scipy==1.12.0
2
+ networkx
3
+ wordcloud
4
+ matplotlib
5
+ Pillow==10.2.0
6
+ tqdm
7
+ gradio==4.21.0
8
+ requests
9
+ huggingface_hub
10
+ GPUtil
11
+ dashscope
install_windows.bat ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+
3
+ REM ���python��װ
4
+ SET PYTHON_VERSION=3.10.2
5
+ SET PYTHON_INSTALLER_URL=https://www.python.org/ftp/python/%PYTHON_VERSION%/python-%PYTHON_VERSION%-amd64.exe
6
+
7
+ python --version >NUL 2>&1
8
+ if %ERRORLEVEL% neq 0 (
9
+ echo Python is not installed. Attempting to install Python %PYTHON_VERSION%...
10
+ bitsadmin /transfer "PythonInstaller" %PYTHON_INSTALLER_URL% python-installer.exe
11
+ start /wait python-installer.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0
12
+ del /f python-installer.exe
13
+ python --version >NUL 2>&1
14
+ if %ERRORLEVEL% neq 0 (
15
+ echo Failed to install Python.
16
+ pause >nul
17
+ exit /b 1
18
+ )
19
+ )
20
+
21
+ echo Python installed.
22
+
23
+
24
+ REM ���⻷����ⴴ��
25
+ if not exist "myenv" (
26
+ echo ���ڴ������⻷��...
27
+ python -m venv myenv
28
+ if %ERRORLEVEL% neq 0 (
29
+ echo �������⻷��ʧ�ܣ����� python �Ƿ�װ����Լ� python �汾�Ƿ�Ϊ64λ�汾��python 3.10����python��Ŀ¼�Ƿ��ڻ�������PATH�ڡ�
30
+ pause >nul
31
+ exit /b 1
32
+ )
33
+ )
34
+
35
+ call myenv\Scripts\activate
36
+
37
+
38
+ REM ͨ���ȸ�����������ʹ�þ���
39
+ set "target_url=www.google.com"
40
+ set "timeout=3000"
41
+
42
+ ping %target_url% -n 1 -w %timeout% >nul
43
+ if %errorlevel% neq 0 (
44
+ echo Use CN
45
+ set PIP_DISABLE_PIP_VERSION_CHECK=1
46
+ set PIP_NO_CACHE_DIR=1
47
+ set PIP_INDEX_URL=https://mirror.baidu.com/pypi/simple
48
+ ) else (
49
+ echo Use default
50
+ )
51
+
52
+ set HF_HOME=huggingface
53
+
54
+ REM ��װ����
55
+
56
+ echo Installing deps...
57
+ echo ��װ����
58
+ python -m pip install --upgrade pip
59
+ pip install -r ./install_script/requirements.txt
60
+ if %ERRORLEVEL% neq 0 (
61
+ echo Deps install failed
62
+ echo ������װʧ�ܡ�
63
+ pause >nul
64
+ exit /b 1
65
+ )
66
+
67
+ echo.
68
+ echo Install completed, please run Start to open the GUI
69
+ echo ��װ��ϣ�������Start��GUI
70
+ echo.
71
+
72
+ pause
lib/Api_Utils.py ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ import time
4
+ import json
5
+ import base64
6
+ import requests
7
+ import subprocess
8
+ import platform
9
+ from PIL import Image
10
+ from requests.adapters import HTTPAdapter
11
+ import re
12
+ from urllib3.util.retry import Retry
13
+ from huggingface_hub import snapshot_download
14
+
15
+ API_PATH = 'api_settings.json'
16
+ QWEN_MOD = 'qwen-vl-plus'
17
+ DEFAULT_GPT_MODEL = 'gpt-4o'
18
+ DEFAULT_CLAUDE_MODEL = 'claude-3-sonnet'
19
+
20
+ # 扩展prompt {} 标记功能,从文件读取额外内容
21
+ def addition_prompt_process(prompt, image_path):
22
+ # 从image_path分离文件名和扩展名,并更改扩展名为.txt
23
+ if '{' not in prompt and '}' not in prompt:
24
+ return prompt
25
+ file_root, _ = os.path.splitext(image_path)
26
+ new_file_name = os.path.basename(file_root) + ".txt"
27
+ # 从prompt中提取目录路径
28
+ directory_path = prompt[prompt.find('{') + 1: prompt.find('}')]
29
+ # 拼接新的文件路径
30
+ full_path = os.path.join(directory_path, new_file_name)
31
+ # 读取full_path指定的文件内容
32
+ try:
33
+ with open(full_path, 'r') as file:
34
+ file_content = file.read()
35
+ except Exception as e:
36
+ return f"Error reading file: {e}"
37
+
38
+ new_prompt = prompt.replace('{' + directory_path + '}', file_content)
39
+ return new_prompt
40
+
41
+ # 通义千问VL
42
+ def is_ali(api_url):
43
+ if api_url.endswith("/v1/services/aigc/multimodal-generation/generation"):
44
+ return True
45
+ else:
46
+ return False
47
+
48
+ def is_claude(api_url, model):
49
+ if api_url.endswith("v1/messages") or "claude" in model.lower():
50
+ return True
51
+ else:
52
+ return False
53
+
54
+ def qwen_api_switch(mod):
55
+ global QWEN_MOD
56
+ QWEN_MOD = mod
57
+ return QWEN_MOD
58
+
59
+ def qwen_api(image_path, prompt, api_key):
60
+ print(f"QWEN_MOD: {QWEN_MOD}")
61
+
62
+ os.environ['DASHSCOPE_API_KEY'] = api_key
63
+ from dashscope import MultiModalConversation
64
+ img = f"file://{image_path}"
65
+ messages = [{
66
+ 'role': 'system',
67
+ 'content': [
68
+ {'text': 'You are a helpful assistant.'}
69
+ ]
70
+ }, {
71
+ 'role':'user',
72
+ 'content': [
73
+ {'image': img},
74
+ {'text': prompt},
75
+ ]
76
+ }]
77
+
78
+ response = MultiModalConversation.call(model=QWEN_MOD, messages=messages, stream=False, max_length=300)
79
+ if '"status_code": 400' in response:
80
+ return f"API error: {response}"
81
+ if response.get("output") and response["output"].get("choices") and response["output"]["choices"][0].get("message") and response["output"]["choices"][0]["message"].get("content"):
82
+ if response["output"]["choices"][0]["message"]["content"][0].get("text", False):
83
+ caption = response["output"]["choices"][0]["message"]["content"][0]["text"]
84
+ else:
85
+ box_value = response["output"]["choices"][0]["message"]["content"][0]["box"]
86
+ text_value = response["output"]["choices"][0]["message"]["content"][1]["text"]
87
+ b_value = re.search(r'<ref>(.*?)</ref>', box_value).group(1)
88
+ caption = b_value + text_value
89
+ else:
90
+ caption = response
91
+ return caption
92
+
93
+ def claude_api(image_path, prompt, api_key, api_url, model, quality=None):
94
+ print(f"CLAUDE_MODEL: {model}")
95
+
96
+ with open(image_path, "rb") as image_file:
97
+ # Downscale the image
98
+ image = Image.open(image_file)
99
+ width, height = image.size
100
+ if quality:
101
+ if quality == "high":
102
+ target = 1024
103
+ elif quality == "low":
104
+ target = 512
105
+ elif quality == "auto":
106
+ if width >= 1024 or height >= 1024:
107
+ target = 1024
108
+ else:
109
+ target = 512
110
+ else:
111
+ target = 1024
112
+
113
+ aspect_ratio = width / height
114
+
115
+ # Determine the new dimensions while maintaining the aspect ratio
116
+ if width > target or height > target:
117
+ if width > height:
118
+ new_width = target
119
+ new_height = int(new_width / aspect_ratio)
120
+ else:
121
+ new_height = target
122
+ new_width = int(new_height * aspect_ratio)
123
+ else:
124
+ new_width, new_height = width, height
125
+
126
+ # Resize the image
127
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
128
+ # Use buffer to store image
129
+ buffer = io.BytesIO()
130
+ resized_image.save(buffer, format="JPEG")
131
+ image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
132
+
133
+ # Claude API
134
+ data = {
135
+ "model": model,
136
+ "max_tokens": 300,
137
+ "messages": [
138
+ {"role": "user", "content": [
139
+ {"type": "image", "source": {
140
+ "type": "base64",
141
+ "media_type": "image/jpeg",
142
+ "data": image_base64
143
+ }
144
+ },
145
+ {"type": "text", "text": prompt}
146
+ ]
147
+ }
148
+ ]
149
+ }
150
+
151
+ # print(f"data: {data}\n")
152
+
153
+ headers = {
154
+ "Content-Type": "application/json",
155
+ "x-api-key:": api_key,
156
+ "anthropic-version": "2023-06-01"
157
+ }
158
+
159
+ # 配置重试策略
160
+ retries = Retry(total=5,
161
+ backoff_factor=1,
162
+ status_forcelist=[429, 500, 502, 503, 504],
163
+ allowed_methods=["HEAD", "GET", "OPTIONS", "POST"]) # 更新参数名
164
+
165
+ with requests.Session() as s:
166
+ s.mount('https://', HTTPAdapter(max_retries=retries))
167
+
168
+ try:
169
+ response = s.post(api_url, headers=headers, json=data)
170
+ response.raise_for_status()
171
+ # 连接错误回显
172
+ except requests.exceptions.HTTPError as errh:
173
+ return f"HTTP Error: {errh}"
174
+ except requests.exceptions.ConnectionError as errc:
175
+ return f"Error Connecting: {errc}"
176
+ except requests.exceptions.Timeout as errt:
177
+ return f"Timeout Error: {errt}"
178
+ except requests.exceptions.RequestException as err:
179
+ return f"OOps: Something Else: {err}"
180
+
181
+ try:
182
+ response_data = response.json()
183
+ if 'error' in response_data:
184
+ return f"API error: {response_data['error']['message']}"
185
+ caption = response_data['content'][0]['text']
186
+ return caption
187
+ except Exception as e:
188
+ return f"Failed to parse the API response: {e}\n{response.text}"
189
+
190
+
191
+
192
+ # API使用
193
+ def run_openai_api(image_path, prompt, api_key, api_url, quality=None, timeout=10, model=DEFAULT_GPT_MODEL):
194
+ prompt = addition_prompt_process(prompt, image_path)
195
+ # print("prompt{}:",prompt)
196
+
197
+ # Qwen-VL
198
+ if is_ali(api_url):
199
+ return qwen_api(image_path, prompt, api_key)
200
+ if is_claude(api_url, model):
201
+ return claude_api(image_path, prompt, api_key, api_url, model, quality)
202
+ with open(image_path, "rb") as image_file:
203
+ image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
204
+
205
+ # GPT-4V
206
+ data = {
207
+ "model": model,
208
+ "messages": [
209
+ {
210
+ "role": "user",
211
+ "content":
212
+ [
213
+ {"type": "image_url", "image_url":
214
+ {"url": f"data:image/jpeg;base64,{image_base64}",
215
+ "detail": f"{quality}"}
216
+ },
217
+ {"type": "text", "text": prompt}
218
+ ]
219
+ }
220
+ ],
221
+ "max_tokens": 300
222
+ }
223
+
224
+ headers = {
225
+ "Content-Type": "application/json",
226
+ "Authorization": f"Bearer {api_key}"
227
+ }
228
+
229
+ # 配置重试策略
230
+ retries = Retry(total=5,
231
+ backoff_factor=1,
232
+ status_forcelist=[429, 500, 502, 503, 504],
233
+ allowed_methods=["HEAD", "GET", "OPTIONS", "POST"]) # 更新参数名
234
+
235
+ with requests.Session() as s:
236
+ s.mount('https://', HTTPAdapter(max_retries=retries))
237
+
238
+ try:
239
+ response = s.post(api_url, headers=headers, json=data, timeout=timeout)
240
+ response.raise_for_status()
241
+ # 连接错误回显
242
+ except requests.exceptions.HTTPError as errh:
243
+ return f"HTTP Error: {errh}"
244
+ except requests.exceptions.ConnectionError as errc:
245
+ return f"Error Connecting: {errc}"
246
+ except requests.exceptions.Timeout as errt:
247
+ return f"Timeout Error: {errt}"
248
+ except requests.exceptions.RequestException as err:
249
+ return f"OOps: Something Else: {err}"
250
+
251
+ try:
252
+ response_data = response.json()
253
+
254
+ if 'error' in response_data:
255
+ return f"API error: {response_data['error']['message']}"
256
+
257
+ caption = response_data["choices"][0]["message"]["content"]
258
+ return caption
259
+ except Exception as e:
260
+ return f"Failed to parse the API response: {e}\n{response.text}"
261
+
262
+
263
+ # API存档
264
+ def save_api_details(api_key, api_url):
265
+ if is_ali(api_url):
266
+ settings = {
267
+ 'model' : QWEN_MOD,
268
+ 'api_key': api_key,
269
+ 'api_url': api_url
270
+ }
271
+ else:
272
+ settings = {
273
+ 'model' : 'GPT',
274
+ 'api_key': api_key,
275
+ 'api_url': api_url
276
+ }
277
+ # 不记录空的apikey
278
+ if api_key != "":
279
+ with open(API_PATH, 'w', encoding='utf-8') as f:
280
+ json.dump(settings, f)
281
+
282
+ def save_state(llm, key, url):
283
+ if llm[:3] == "GPT" or llm[:4] == "qwen":
284
+ settings = {
285
+ 'model': llm,
286
+ 'api_key': key,
287
+ 'api_url': url
288
+ }
289
+
290
+ elif llm[:3] == "Cog" or llm[:4] == "moon" or llm[:7] == "MiniCPM":
291
+ settings = {
292
+ 'model' : llm,
293
+ 'api_key': "",
294
+ 'api_url': "http://127.0.0.1:8000/v1/chat/completions"
295
+ }
296
+
297
+ output = f"Set {llm} as default. / {llm}已设为默认"
298
+ with open(API_PATH, 'w', encoding='utf-8') as f:
299
+ json.dump(settings, f)
300
+ return output
301
+
302
+ # 读取API设置
303
+ def get_api_details():
304
+ settings_file = API_PATH
305
+ if os.path.exists(settings_file):
306
+ with open(settings_file, 'r') as f:
307
+ settings = json.load(f)
308
+ if settings.get('model', '') != '':
309
+ mod = settings.get('model', '')
310
+ url = settings.get('api_url', '')
311
+ if mod[:4] == "qwen":
312
+ global QWEN_MOD
313
+ QWEN_MOD = mod
314
+ else:
315
+ if is_ali(url):
316
+ mod = QWEN_MOD
317
+ return mod, settings.get('api_key', ''), url
318
+ else:
319
+ if settings.get('api_key', '') != '':
320
+ i_key = settings.get('api_key', '')
321
+ i_url = settings.get('api_url', '')
322
+ save_api_details(i_key,i_url)
323
+ with open(settings_file, 'r') as i:
324
+ settings = json.load(i)
325
+ return settings.get('model', ''), settings.get('api_key', ''), settings.get('api_url', '')
326
+ return 'GPT', '', ''
327
+
328
+
329
+ # 本地模型相关
330
+ def downloader(model_type, acceleration):
331
+ endpoint = 'https://hf-mirror.com' if acceleration == 'CN' else None
332
+ if model_type == 'vqa' or model_type == 'chat':
333
+ snapshot_download(
334
+ repo_id="lmsys/vicuna-7b-v1.5",
335
+ allow_patterns=["tokenizer*","special_tokens_map.json"],
336
+ endpoint=endpoint
337
+ )
338
+ if model_type == 'vqa':
339
+ snapshot_download(
340
+ repo_id="THUDM/cogagent-vqa-hf",
341
+ local_dir="./models/cogagent-vqa-hf",
342
+ max_workers=8,
343
+ endpoint=endpoint
344
+ )
345
+ elif model_type == 'chat':
346
+ snapshot_download(
347
+ repo_id="THUDM/cogagent-chat-hf",
348
+ local_dir="./models/cogagent-chat-hf",
349
+ max_workers=8,
350
+ endpoint=endpoint
351
+ )
352
+ elif model_type == 'moondream':
353
+ snapshot_download(
354
+ repo_id="vikhyatk/moondream1",
355
+ local_dir="./models/moondream",
356
+ max_workers=8,
357
+ endpoint=endpoint
358
+ )
359
+ elif model_type == 'minicpm':
360
+ snapshot_download(
361
+ repo_id="openbmb/MiniCPM-Llama3-V-2_5",
362
+ local_dir="./models/MiniCPM-Llama3-V-2_5",
363
+ max_workers=8,
364
+ endpoint=endpoint
365
+ )
366
+ return f"{model_type} Model download completed. / {model_type}模型下载完成"
367
+
368
+ def installer():
369
+ if platform.system() == "Windows":
370
+ install_command = f'.\install_script\installcog.bat'
371
+ else:
372
+ install_command = f'./install_script/installcog.sh'
373
+ subprocess.Popen(f'chmod +x {install_command}', shell=True)
374
+ subprocess.Popen('', shell=True) #Use an empty subprocess to refresh permission. If deleted, installcog.sh wouldn't launch properly, with Permission denied error
375
+ subprocess.Popen(install_command, shell=True)
376
+
377
+ while not os.path.exists('install_temp.txt'):
378
+ time.sleep(2)
379
+ with open('install_temp.txt', 'r') as file:
380
+ result_string = file.read()
381
+ os.remove('install_temp.txt')
382
+ return result_string
lib/Detecter.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ import GPUtil
3
+
4
+ def check_memory():
5
+ gpus = GPUtil.getGPUs()
6
+ for gpu in gpus:
7
+ if gpu.memoryTotal > 12000:
8
+ return ""
9
+ elif gpu.memoryTotal > 6000:
10
+ return "Only MoonDream can be used. / 仅可使用MoonDream"
11
+ return "Insufficient GPU graphics memory for use. / 显存过小"
12
+
13
+ def install_detection(requir_path):
14
+ # 读
15
+ file_path = requir_path
16
+ requirements = []
17
+ with open(file_path, 'r') as file:
18
+ for line in file:
19
+ requirements.append(line.strip())
20
+
21
+ # 查
22
+ missing_libs = []
23
+ for libs in requirements:
24
+ try:
25
+ importlib.import_module(libs)
26
+ except ImportError:
27
+ missing_libs.append(libs)
28
+
29
+ return missing_libs
30
+
31
+ def print_missing(missing_libs):
32
+ # 返
33
+ if missing_libs == []:
34
+ return ""
35
+ else:
36
+ return f"Not installed libraries: {', '.join(missing_libs)}"
37
+
38
+ def detecter():
39
+ gpu_check = check_memory()
40
+ cog_requir = "./install_script/check.txt"
41
+ installed = print_missing(install_detection(cog_requir))
42
+
43
+ if installed == "":
44
+ return gpu_check + "All listed libraries are installed. / 本地模型依赖安装无误"
45
+ else:
46
+ return gpu_check + installed
47
+
48
+
49
+ def is_installed(package):
50
+ try:
51
+ dist = importlib.metadata.distribution(package)
52
+ except importlib.metadata.PackageNotFoundError:
53
+ try:
54
+ spec = importlib.util.find_spec(package)
55
+ except ModuleNotFoundError:
56
+ return False
57
+
58
+ return spec is not None
59
+
60
+ return dist is not None
lib/Failed_Tagging_File_Screening.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import shutil
4
+
5
+ # List of supported image file extensions
6
+ IMAGE_EXTENSIONS = ['.png', '.jpg', '.jpeg', '.webp', '.bmp', '.gif', '.tiff', '.tif']
7
+
8
+ # Global variable to keep track of the number of moved images
9
+ moved_images_count = 0
10
+
11
+ # Check and move documents and their associated image files with the same name
12
+ def move_files_with_keywords(source_folder, target_folder, keywords):
13
+ global moved_images_count
14
+ # Create the target folder if it doesn't exist
15
+ if not os.path.exists(target_folder):
16
+ os.makedirs(target_folder)
17
+
18
+ # Iterate through all the files and folders within source_folder
19
+ for root, dirs, files in os.walk(source_folder):
20
+ for file in files:
21
+ if file.endswith('.txt'):
22
+ file_path = os.path.join(root, file)
23
+ # Check if the text file contains any of the keywords
24
+ if has_keywords(file_path, keywords):
25
+ # Move the text file
26
+ shutil.move(file_path, os.path.join(target_folder, file))
27
+ # Move the related image files with the same name
28
+ move_related_images(root, file, target_folder)
29
+
30
+ # Check if the text file contains any of the given keywords
31
+ def has_keywords(file_path, keywords):
32
+ with open(file_path, 'r', encoding='utf-8') as file:
33
+ content = file.read()
34
+ return any(keyword.lower() in content.lower() for keyword in keywords)
35
+
36
+ # Move the image files with the same name as the text file
37
+ def move_related_images(file_dir, text_file, target_folder):
38
+ global moved_images_count
39
+ base_name = os.path.splitext(text_file)[0]
40
+ for ext in IMAGE_EXTENSIONS:
41
+ image_file = base_name + ext
42
+ image_path = os.path.join(file_dir, image_file)
43
+ if os.path.exists(image_path):
44
+ # Check if the image already exists in the target folder
45
+ target_image_path = os.path.join(target_folder, image_file)
46
+ file_counter = 1
47
+ # Find a unique file name in the target folder
48
+ while os.path.exists(target_image_path):
49
+ # Generate a new file name with a counter
50
+ new_base_name = f"{base_name}_{file_counter}"
51
+ target_image_path = os.path.join(target_folder, new_base_name + ext)
52
+ file_counter += 1
53
+ # Move the image file to the target folder with the new unique name
54
+ shutil.move(image_path, target_image_path)
55
+ moved_images_count += 1 # Increment the count for each moved image
56
+
57
+ def main(image_path, keywords):
58
+ # The target folder will be created in the same directory as image_path
59
+ target_folder = os.path.join(os.path.dirname(image_path), 'moved_files')
60
+ move_files_with_keywords(image_path, target_folder, keywords)
61
+ # Display the message with the count of moved images and the target folder path
62
+ print(f"Operation complete / 操作完成. Total images moved: {moved_images_count}. Moved to folder: {target_folder}")
63
+
64
+ if __name__ == "__main__":
65
+ parser = argparse.ArgumentParser(description="Move documents containing keywords and their associated image files with the same name.")
66
+ parser.add_argument('--image_path', type=str, help='The path to the folder')
67
+ parser.add_argument('--keywords', type=str, help='List of keywords, separated by commas', default='error,sorry,content')
68
+ args = parser.parse_args()
69
+
70
+ # Split the received keyword string into a list
71
+ keywords = args.keywords.split(',')
72
+
73
+ main(args.image_path, keywords)
lib/GPT_Prompt.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+ import gradio as gr
4
+
5
+ # GPT Prompt
6
+ PROMPTS_CSV_PATH = "saved_prompts.csv"
7
+
8
+ def get_prompts_from_csv():
9
+ if not os.path.exists(PROMPTS_CSV_PATH):
10
+ return []
11
+ with open(PROMPTS_CSV_PATH, 'r', newline='', encoding='utf-8') as file:
12
+ reader = csv.reader(file)
13
+ # remove empty rows
14
+ return [row[0] for row in reader if row]
15
+
16
+ def save_prompt(prompt):
17
+ # Append CSV
18
+ with open(PROMPTS_CSV_PATH, 'a+', newline='', encoding='utf-8') as file:
19
+ # Move to start
20
+ file.seek(0)
21
+ reader = csv.reader(file)
22
+ existing_prompts = [row[0] for row in reader]
23
+ if prompt not in existing_prompts:
24
+ writer = csv.writer(file)
25
+ writer.writerow([prompt])
26
+ # Move to end
27
+ file.seek(0, os.SEEK_END)
28
+ return gr.Dropdown(label="Saved Prompts", choices=get_prompts_from_csv(), type="value", interactive=True)
29
+
30
+ def delete_prompt(prompt):
31
+ lines = []
32
+ with open(PROMPTS_CSV_PATH, 'r', newline='', encoding='utf-8') as readFile:
33
+ reader = csv.reader(readFile)
34
+ lines = [row for row in reader if row and row[0] != prompt]
35
+ with open(PROMPTS_CSV_PATH, 'w', newline='', encoding='utf-8') as writeFile:
36
+ writer = csv.writer(writeFile)
37
+ writer.writerows(lines)
38
+ return gr.Dropdown(label="Saved Prompts", choices=get_prompts_from_csv(), type="value", interactive=True)
lib/Img_Processing.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ import concurrent.futures
4
+
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
+ from PIL import Image, ExifTags
8
+
9
+ target_resolutions = [
10
+ (640, 1632), # 640 * 1632 = 1044480
11
+ (704, 1472), # 704 * 1472 = 1036288
12
+ (768, 1360), # 768 * 1360 = 1044480
13
+ (832, 1248), # 832 * 1248 = 1038336
14
+ (896, 1152),
15
+ (960, 1088), # 960 * 1088 = 1044480
16
+ (992, 1056), # 992 * 1056 = 1047552
17
+ (1024, 1024), # 1024 * 1024 = 1048576
18
+ (1056, 992), # 1056 * 992 = 1047552
19
+ (1088, 960), # 1088 * 960 = 1044480
20
+ (1152, 896),
21
+ (1248, 832), # 1248 * 832 = 1038336
22
+ (1360, 768), # 1360 * 768 = 1044480
23
+ (1472, 704), # 1472 * 704 = 1036288
24
+ (1632, 640), # 1632 * 640 = 1044480
25
+ # (768, 1360), # 768 * 1360 = 1044480
26
+ # (1472, 704), # 1472 * 704 = 1036288
27
+ # (1024, 1024), # 1024 * 1024 = 1048576
28
+ ]
29
+
30
+ # 图像预处理
31
+ def apply_exif_orientation(image):
32
+ try:
33
+ for orientation in ExifTags.TAGS.keys():
34
+ if ExifTags.TAGS[orientation] == 'Orientation':
35
+ break
36
+ exif = image._getexif()
37
+
38
+ if exif is not None:
39
+ exif = dict(exif.items())
40
+ orientation_value = exif.get(orientation)
41
+
42
+ if orientation_value == 3:
43
+ image = image.rotate(180, expand=True)
44
+ elif orientation_value == 6:
45
+ image = image.rotate(270, expand=True)
46
+ elif orientation_value == 8:
47
+ image = image.rotate(90, expand=True)
48
+ except (AttributeError, KeyError, IndexError, TypeError):
49
+ # cases: image don't have getexif
50
+ pass
51
+
52
+ return image
53
+
54
+ def convert_image_to_jpg(img, img_path):
55
+ """Convert an Image object to JPG."""
56
+ # Remove extension from original filename and add .jpg
57
+ base_name = os.path.splitext(img_path)[0]
58
+ jpg_path = base_name + '.jpg'
59
+
60
+ # Convert image to RGB if it is RGBA (or any other mode)
61
+ if img.mode != 'RGB':
62
+ img = img.convert('RGB')
63
+
64
+ img.save(jpg_path, format='JPEG', quality=100)
65
+
66
+ def process_image(img_path):
67
+ try:
68
+ if img_path.lower().endswith((".jpg", ".png", ".bmp", ".gif", ".tif", ".tiff", ".jpeg", ".webp")):
69
+ img = Image.open(img_path)
70
+ img = apply_exif_orientation(img) # Apply the EXIF orientation
71
+
72
+ # Convert to 'RGB' if it is 'RGBA' or any other mode
73
+ img = img.convert('RGB')
74
+
75
+ # 计算原图像的宽高比
76
+ original_aspect_ratio = img.width / img.height
77
+
78
+ # 找到最接近原图像宽高比的目标分辨率
79
+ target_resolution = min(target_resolutions, key=lambda res: abs(original_aspect_ratio - res[0] / res[1]))
80
+
81
+ # 计算新的维度
82
+ if img.width / target_resolution[0] < img.height / target_resolution[1]:
83
+ new_width = target_resolution[0]
84
+ new_height = int(img.height * target_resolution[0] / img.width)
85
+ else:
86
+ new_height = target_resolution[1]
87
+ new_width = int(img.width * target_resolution[1] / img.height)
88
+
89
+ # 等比缩放图像
90
+ img = img.resize((new_width, new_height), Image.LANCZOS)
91
+
92
+ # 计算裁剪的区域
93
+ left = int((img.width - target_resolution[0]) / 2)
94
+ top = int((img.height - target_resolution[1]) / 2)
95
+ right = int((img.width + target_resolution[0]) / 2)
96
+ bottom = int((img.height + target_resolution[1]) / 2)
97
+
98
+ # 裁剪图像
99
+ img = img.crop((left, top, right, bottom))
100
+
101
+ # 转换并保存图像为JPG格式
102
+ convert_image_to_jpg(img, img_path)
103
+
104
+ except Exception as e:
105
+ print(f"Error processing image {img_path}: {e}")
106
+ return None
107
+
108
+ def delete_non_jpg_files(folder_path):
109
+ """Delete all non-jpg image files in a directory, but keep txt files."""
110
+ for dirpath, dirnames, filenames in os.walk(folder_path):
111
+ for filename in filenames:
112
+ if not filename.lower().endswith((".jpg", ".txt")):
113
+ file_path = os.path.join(dirpath, filename)
114
+ try:
115
+ os.remove(file_path)
116
+ except Exception as e:
117
+ print(f"Error occurred while deleting file : {file_path}. Error : {str(e)}")
118
+
119
+ def process_images_in_folder(folder_path):
120
+ """
121
+ Process all images in the given folder according to the target resolutions,
122
+ then delete all non-jpg files except for .txt files.
123
+ """
124
+ processed_files = []
125
+
126
+ file_list = [os.path.join(dirpath, filename)
127
+ for dirpath, dirnames, filenames in os.walk(folder_path)
128
+ for filename in filenames]
129
+
130
+ with concurrent.futures.ThreadPoolExecutor() as executor:
131
+ list(tqdm(executor.map(process_image, file_list), total=len(file_list)))
132
+
133
+ delete_non_jpg_files(folder_path)
134
+ return f"Processed images in folder: {folder_path}"
135
+
136
+ # 失败检查
137
+ def run_script(folder_path, keywords):
138
+ keywords = keywords if keywords else "sorry,error"
139
+ result = subprocess.run(
140
+ [
141
+ 'python', './lib/Failed_Tagging_File_Screening.py',
142
+ '--image_path', folder_path,
143
+ '--keywords', keywords
144
+ ],
145
+ capture_output=True, text=True
146
+ )
147
+ return result.stdout if result.stdout else "No Output", result.stderr if result.stderr else "No Error"
lib/Tag_Processor.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import collections
3
+ import random
4
+
5
+ import matplotlib.pyplot as plt
6
+ import networkx as nx
7
+
8
+ from wordcloud import WordCloud
9
+ from itertools import combinations
10
+ from lib import Translator
11
+
12
+
13
+ def unique_elements(original, addition):
14
+ original_list = list(map(str.strip, original.split(',')))
15
+ addition_list = list(map(str.strip, addition.split(',')))
16
+ combined_list = []
17
+ seen = set()
18
+ for item in original_list + addition_list:
19
+ if item not in seen and item != '':
20
+ seen.add(item)
21
+ combined_list.append(item)
22
+
23
+ return ', '.join(combined_list)
24
+
25
+ def save_path(folder_path,file_name):
26
+ n_path = os.path.join(folder_path, "Tag_analysis")
27
+ if not os.path.exists(n_path):
28
+ try:
29
+ os.makedirs(n_path)
30
+ except Exception as e:
31
+ print(f"Error : {e}")
32
+ save_path = os.path.join(n_path, file_name)
33
+ return save_path
34
+
35
+ def modify_tags_in_folder(folder_path, tags_to_remove, tags_to_replace_dict, new_tag, insert_position):
36
+ for root, dirs, files in os.walk(folder_path):
37
+ for file in files:
38
+ if file.endswith('.txt'):
39
+ file_path = os.path.join(root, file)
40
+ with open(file_path, 'r', encoding='utf-8') as f:
41
+ content = f.read()
42
+ tags = [tag.strip() for tag in content.split(',')]
43
+ # 删除标签
44
+ tags = [tag for tag in tags if tag not in tags_to_remove]
45
+ # 替换标签
46
+ for old_tag, new_tag_replacement in tags_to_replace_dict.items():
47
+ tags = [new_tag_replacement if tag == old_tag else tag for tag in tags]
48
+ # 添加标签
49
+ if new_tag and new_tag.strip():
50
+ if insert_position == 'Start / 开始':
51
+ tags.insert(0, new_tag.strip())
52
+ elif insert_position == 'End / 结束':
53
+ tags.append(new_tag.strip())
54
+ elif insert_position == 'Random / 随机':
55
+ random_index = random.randrange(len(tags)+1)
56
+ tags.insert(random_index, new_tag.strip())
57
+
58
+ # 保存修改后的文件
59
+ with open(file_path, 'w', encoding='utf-8') as f:
60
+ updated_content = ', '.join(tags)
61
+ f.write(updated_content)
62
+
63
+ return "Tags modified successfully."
64
+
65
+
66
+ # 词云
67
+ def count_tags_in_folder(folder_path, top_n):
68
+ tags_counter = collections.Counter()
69
+ for root, dirs, files in os.walk(folder_path):
70
+ for file in files:
71
+ if file.endswith('.txt'):
72
+ file_path = os.path.join(root, file)
73
+ with open(file_path, 'r', encoding='utf-8') as f:
74
+ content = f.read()
75
+ tags = content.split(',')
76
+ tags = [tag.strip() for tag in tags]
77
+ tags_counter.update(tags)
78
+
79
+ sorted_tags = sorted(tags_counter.items(), key=lambda x: x[1], reverse=True)
80
+ return sorted_tags[:top_n]
81
+
82
+ def generate_network_graph(folder_path, top_n):
83
+ G = nx.Graph()
84
+ tags_cooccurrence = collections.defaultdict(int)
85
+
86
+ # 读取文件并计算标签的共现关系
87
+ for root, dirs, files in os.walk(folder_path):
88
+ for file in files:
89
+ if file.endswith('.txt'):
90
+ file_path = os.path.join(root, file)
91
+ with open(file_path, 'r', encoding='utf-8') as f:
92
+ content = f.read()
93
+ tags = list(set(content.split(','))) # 去重
94
+ for tag_pair in combinations(tags, 2):
95
+ if tag_pair[0].strip() and tag_pair[1].strip(): # 确保标签不是空的
96
+ tags_cooccurrence[tag_pair] += 1
97
+
98
+ # 只考虑top n个共现关系
99
+ top_cooccurrences = sorted(tags_cooccurrence.items(), key=lambda x: x[1], reverse=True)[:top_n]
100
+
101
+ # 添加边到图中
102
+ for (tag1, tag2), weight in top_cooccurrences:
103
+ G.add_edge(tag1.strip(), tag2.strip(), weight=weight)
104
+
105
+ # 设置画布大小
106
+ plt.figure(figsize=(24, 12))
107
+
108
+ # 创建黑色背景
109
+ gradio_blue = '#0B0F19'
110
+ plt.gca().set_facecolor(gradio_blue)
111
+
112
+ # 为节点设置大小和颜色
113
+ degrees = dict(G.degree)
114
+ node_size = [v * 100 for v in degrees.values()]
115
+ # 使用更鲜亮的颜色映射
116
+ node_color = [degrees[n] for n in G.nodes]
117
+
118
+ # 为边设置宽度
119
+ edge_width = [G[u][v]['weight'] / 100 for u, v in G.edges] # 除以10是为了使边宽度合适
120
+
121
+ # 计算节点的布局
122
+ pos = nx.kamada_kawai_layout(G)
123
+ # pos = nx.spring_layout(G, k=0.5, iterations=50)
124
+
125
+ # 绘制节点,使用Plasma配色方案,以适配黑色背景
126
+ nx.draw_networkx_nodes(G, pos, node_size=node_size,
127
+ node_color=node_color, cmap=plt.cm.plasma, alpha=0.8)
128
+
129
+ # 绘制边,使用带有透明度的白色
130
+ nx.draw_networkx_edges(G, pos, width=edge_width, alpha=0.3, edge_color='w')
131
+
132
+ # 绘制标签,设置为白色以突出显示
133
+ nx.draw_networkx_labels(G, pos, font_size=12,
134
+ font_weight='bold', font_color='white',
135
+ font_family='sans-serif')
136
+
137
+ # 移除坐标轴
138
+ plt.axis('off')
139
+
140
+ # 保存图像
141
+ save_network = save_path(folder_path,'tag_network.png')
142
+ plt.savefig(save_network, format='png', dpi=300, bbox_inches='tight', facecolor=gradio_blue)
143
+ plt.close()
144
+ return save_network
145
+
146
+ def generate_wordcloud(folder_path, top):
147
+ tag_counts = count_tags_in_folder(folder_path, top)
148
+ wordcloud = WordCloud(width=1600, height=1200, background_color='white')
149
+ wordcloud.generate_from_frequencies(dict(tag_counts))
150
+ plt.figure(figsize=(20, 15))
151
+ plt.imshow(wordcloud, interpolation='bilinear')
152
+ plt.axis('off')
153
+ plt.tight_layout(pad=0)
154
+ save_wordcloud = save_path(folder_path,'tag_wordcloud.png')
155
+ plt.savefig(save_wordcloud, format='png')
156
+ plt.close()
157
+ return save_wordcloud
158
+
159
+ # Tag处理
160
+ def modify_file_content(file_path, new_content, mode):
161
+ if mode == "skip/跳过" and os.path.exists(file_path):
162
+ print(f"Skip writing, as the file {file_path} already exists.")
163
+ return
164
+
165
+ if mode == "overwrite/覆盖" or not os.path.exists(file_path):
166
+ with open(file_path, 'w', encoding='utf-8') as file:
167
+ file.write(new_content)
168
+ return
169
+
170
+ with open(file_path, 'r+', encoding='utf-8') as file:
171
+ existing_content = file.read()
172
+ file.seek(0)
173
+ if mode == "prepend/前置插入":
174
+ combined_content = unique_elements(new_content, existing_content)
175
+ file.write(combined_content)
176
+ file.truncate()
177
+ elif mode == "append/末尾追加":
178
+ combined_content = unique_elements(existing_content, new_content)
179
+ file.write(combined_content)
180
+ file.truncate()
181
+ else:
182
+ raise ValueError("Invalid mode. Must be 'overwrite/覆盖', 'prepend/前置插入', or 'append/末尾追加'.")
183
+
184
+ def process_tags(folder_path, top_n, tags_to_remove, tags_to_replace, new_tag, insert_position, translate, api_key,
185
+ api_url):
186
+ # 解析删除标签
187
+ tags_to_remove_list = tags_to_remove.split(',') if tags_to_remove else []
188
+ tags_to_remove_list = [tag.strip() for tag in tags_to_remove_list]
189
+
190
+ # 解析替换标签
191
+ tags_to_replace_dict = {}
192
+ if tags_to_replace:
193
+ try:
194
+ for pair in tags_to_replace.split(','):
195
+ old_tag, new_replacement_tag = pair.split(':')
196
+ tags_to_replace_dict[old_tag.strip()] = new_replacement_tag.strip()
197
+ except ValueError:
198
+ return "Error: Tags to replace must be in 'old_tag:new_tag' format separated by commas", None, None
199
+
200
+ # 修改文件夹中的标签
201
+ modify_tags_in_folder(folder_path, tags_to_remove_list, tags_to_replace_dict, new_tag, insert_position)
202
+
203
+ # 词云及网格图
204
+ top = int(top_n)
205
+ wordcloud_path = generate_wordcloud(folder_path, top)
206
+ networkgraph_path = generate_network_graph(folder_path, top)
207
+
208
+ # 翻译Tag功能
209
+ def truncate_tag(tag, max_length=30):
210
+ # 截断过长标签
211
+ return (tag[:max_length] + '...') if len(tag) > max_length else tag
212
+
213
+ tag_counts = count_tags_in_folder(folder_path, top)
214
+
215
+ if translate.startswith('GPT-3.5 translation / GPT3.5翻译'):
216
+ translator = Translator.GPTTranslator(api_key, api_url)
217
+ elif translate.startswith('Free translation / 免费翻译'):
218
+ translator = Translator.ChineseTranslator()
219
+ else:
220
+ translator = None
221
+ if translator:
222
+ tags_to_translate = [tag for tag, _ in tag_counts]
223
+ translations = Translator.translate_tags(translator, tags_to_translate)
224
+ # 确保 translations 列表长度与 tag_counts 一致
225
+ translations.extend(["" for _ in range(len(tag_counts) - len(translations))])
226
+ tag_counts_with_translation = [(truncate_tag(tag_counts[i][0]), tag_counts[i][1], translations[i]) for i in
227
+ range(len(tag_counts))]
228
+ else:
229
+ tag_counts_with_translation = [(truncate_tag(tag), count, "") for tag, count in tag_counts]
230
+
231
+ return tag_counts_with_translation, wordcloud_path, networkgraph_path, "Tags processed successfully."
lib/Translator.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from urllib3.util.retry import Retry
3
+ from requests.adapters import HTTPAdapter
4
+ from concurrent.futures import ThreadPoolExecutor, as_completed
5
+
6
+ class ChineseTranslator:
7
+ def __init__(self):
8
+ self.client = requests.Session()
9
+
10
+ def translate(self, text):
11
+ if not text:
12
+ return None
13
+
14
+ payload = {
15
+ "appid": "105",
16
+ "sgid": "en",
17
+ "sbid": "en",
18
+ "egid": "zh-CN",
19
+ "ebid": "zh-CN",
20
+ "content": text,
21
+ "type": "2",
22
+ }
23
+
24
+ response = self.client.post("https://translate-api-fykz.xiangtatech.com/translation/webs/index", data=payload)
25
+ if response.status_code == 200:
26
+ json_data = response.json()
27
+ by_value = json_data.get("by", "")
28
+ if not by_value:
29
+ return None
30
+ return by_value
31
+
32
+ return None
33
+
34
+ def close_session(self):
35
+ self.client.close()
36
+
37
+ class GPTTranslator:
38
+ def __init__(self, api_key, api_url):
39
+ self.headers = {
40
+ "Content-Type": "application/json",
41
+ "Authorization": f"Bearer {api_key}"
42
+ }
43
+
44
+ self.session = requests.Session()
45
+ retries = Retry(total=5, backoff_factor=0.1, status_forcelist=[429, 500, 502, 503, 504])
46
+ self.session.mount('https://', HTTPAdapter(max_retries=retries))
47
+
48
+ self.api_url = api_url
49
+
50
+ def translate(self, text):
51
+ data = {
52
+ "model": "gpt-3.5-turbo",
53
+ "messages": [
54
+ {"role": "user", "content": f"你是一个英译中专家,请直接返回'{text}'最有可能的三种中文翻译结果,彼此间语义有所区分,结果以逗号间隔."}
55
+ ]
56
+ }
57
+ response = self.session.post(self.api_url, headers=self.headers, json=data)
58
+ response_data = response.json()
59
+
60
+ if response.status_code == 200 and 'choices' in response_data and 'content' in response_data['choices'][0]['message']:
61
+ return response_data['choices'][0]['message']['content']
62
+ else:
63
+ return f"Error or no translation for tag: {text}"
64
+
65
+ def close_session(self):
66
+ self.session.close()
67
+
68
+ def translate_tags(translator, tags):
69
+ translations = [None] * len(tags)
70
+
71
+ with ThreadPoolExecutor(max_workers=50) as executor:
72
+ future_to_index = {executor.submit(translator.translate, tag): i for i, tag in enumerate(tags)}
73
+ for future in as_completed(future_to_index):
74
+ index = future_to_index[future]
75
+ translations[index] = future.result()
76
+
77
+ translator.close_session()
78
+
79
+ return translations
moondream/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .util import detect_device
2
+ from .moondream import Moondream
moondream/configuration_moondream.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ from typing import Optional
4
+ import math
5
+
6
+
7
+ class PhiConfig(PretrainedConfig):
8
+ model_type = "phi-msft"
9
+
10
+ def __init__(
11
+ self,
12
+ vocab_size: int = 51200,
13
+ n_positions: int = 2048,
14
+ n_embd: int = 2048,
15
+ n_layer: int = 24,
16
+ n_inner: Optional[int] = None,
17
+ n_head: int = 32,
18
+ n_head_kv: Optional[int] = None,
19
+ rotary_dim: Optional[int] = 32,
20
+ activation_function: Optional[str] = "gelu_new",
21
+ flash_attn: bool = False,
22
+ flash_rotary: bool = False,
23
+ fused_dense: bool = False,
24
+ attn_pdrop: float = 0.0,
25
+ embd_pdrop: float = 0.0,
26
+ resid_pdrop: float = 0.0,
27
+ layer_norm_epsilon: float = 1e-5,
28
+ initializer_range: float = 0.02,
29
+ tie_word_embeddings: bool = False,
30
+ pad_vocab_size_multiple: int = 64,
31
+ gradient_checkpointing: bool = False,
32
+ **kwargs
33
+ ):
34
+ pad_vocab_size = (
35
+ math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
36
+ )
37
+ super().__init__(
38
+ vocab_size=pad_vocab_size,
39
+ n_positions=n_positions,
40
+ n_embd=n_embd,
41
+ n_layer=n_layer,
42
+ n_inner=n_inner,
43
+ n_head=n_head,
44
+ n_head_kv=n_head_kv,
45
+ activation_function=activation_function,
46
+ attn_pdrop=attn_pdrop,
47
+ embd_pdrop=embd_pdrop,
48
+ resid_pdrop=resid_pdrop,
49
+ layer_norm_epsilon=layer_norm_epsilon,
50
+ initializer_range=initializer_range,
51
+ pad_vocab_size_multiple=pad_vocab_size_multiple,
52
+ tie_word_embeddings=tie_word_embeddings,
53
+ gradient_checkpointing=gradient_checkpointing,
54
+ **kwargs
55
+ )
56
+ self.rotary_dim = min(rotary_dim, n_embd // n_head)
57
+ self.flash_attn = flash_attn
58
+ self.flash_rotary = flash_rotary
59
+ self.fused_dense = fused_dense
60
+
61
+ attribute_map = {
62
+ "max_position_embeddings": "n_positions",
63
+ "hidden_size": "n_embd",
64
+ "num_attention_heads": "n_head",
65
+ "num_hidden_layers": "n_layer",
66
+ }
67
+
68
+
69
+ class MoondreamConfig(PretrainedConfig):
70
+ model_type = "moondream1"
71
+
72
+ def __init__(self, **kwargs):
73
+ self.phi_config = PhiConfig(**kwargs)
74
+ super().__init__(**kwargs)
moondream/modeling_phi.py ADDED
@@ -0,0 +1,720 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+ #
4
+ # Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
5
+ # Licensed under the BSD 3-Clause License.
6
+
7
+ from dataclasses import dataclass, field
8
+ from typing import Any, Dict, Optional, Union, Tuple
9
+
10
+ import math
11
+ import torch
12
+ import torch.nn as nn
13
+ from einops import rearrange, repeat
14
+ from transformers import PretrainedConfig, PreTrainedModel
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import CausalLMOutputWithPast
17
+
18
+ from .configuration_moondream import PhiConfig
19
+
20
+ FusedDense = None
21
+
22
+
23
+ @dataclass
24
+ class InferenceParams:
25
+ max_seqlen: int
26
+ max_batch_size: int
27
+ seqlen_offset: int = 0
28
+ batch_size_offset: int = 0
29
+ key_value_memory_dict: Dict[str, Any] = field(default_factory=dict)
30
+ lengths_per_sample: torch.Tensor = None
31
+
32
+
33
+ class Embedding(nn.Module):
34
+ def __init__(self, config: PretrainedConfig):
35
+ super().__init__()
36
+ self.wte = nn.Embedding(config.vocab_size, config.n_embd)
37
+ self.drop = nn.Dropout(config.embd_pdrop)
38
+
39
+ def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
40
+ return self.drop(self.wte(input_ids.view(-1, input_ids.size(-1))))
41
+
42
+
43
+ def _apply_rotary_emb(x, cos, sin):
44
+ seqlen, rotary_dim = x.size(1), cos.size(1) * 2
45
+ x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:]
46
+ x1, x2 = x_rot.chunk(2, dim=-1)
47
+ c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
48
+ x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1)
49
+ return torch.cat([x_rot.to(x.dtype), x_pass], dim=-1)
50
+
51
+
52
+ def _apply_rotary_emb_kv(
53
+ kv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor
54
+ ) -> torch.FloatTensor:
55
+ seqlen, rotary_dim = kv.shape[1], cos.shape[-1] * 2
56
+ k_rot = kv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
57
+ k_pass = kv[:, :, 0, :, rotary_dim:]
58
+ c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
59
+ k_rot = torch.cat(
60
+ [k_rot[0] * c - k_rot[1] * s, k_rot[0] * s + k_rot[1] * c], dim=-1
61
+ )
62
+ return torch.cat(
63
+ [torch.cat([k_rot, k_pass], dim=-1).unsqueeze(2), kv[:, :, 1:2, :, :]], dim=2
64
+ )
65
+
66
+
67
+ def _apply_rotary_emb_qkv(
68
+ qkv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor
69
+ ) -> torch.FloatTensor:
70
+ seqlen, rotary_dim = qkv.shape[1], cos.shape[1] * 2
71
+
72
+ c = cos[:seqlen].unsqueeze(1)
73
+ s = sin[:seqlen].unsqueeze(1)
74
+
75
+ qkv_rot = torch.stack(
76
+ [
77
+ torch.cat(
78
+ [
79
+ qkv[:, :, i, :, : rotary_dim // 2] * c
80
+ - qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * s,
81
+ qkv[:, :, i, :, : rotary_dim // 2] * s
82
+ + qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * c,
83
+ ],
84
+ dim=-1,
85
+ ).to(qkv.dtype)
86
+ for i in range(2)
87
+ ],
88
+ dim=2,
89
+ )
90
+
91
+ qkv_pass = qkv[:, :, :2, :, rotary_dim:].unsqueeze(2)
92
+ qkv_v = qkv[:, :, 2:3, :, :]
93
+ return torch.cat([qkv_rot, qkv_pass, qkv_v], dim=2)
94
+
95
+
96
+ class RotaryEmbedding(nn.Module):
97
+ # Enhanced Transformer with Rotary Position Embedding (https://arxiv.org/pdf/2104.09864.pdf)
98
+ def __init__(
99
+ self,
100
+ dim: int,
101
+ base: int = 10000,
102
+ scale_base: Optional[float] = None,
103
+ pos_idx_in_fp32: bool = True,
104
+ max_position_embeddings: int = 2048,
105
+ device: Optional[str] = None,
106
+ ) -> None:
107
+ super().__init__()
108
+ # fp32 is preferred since the output of `torch.arange` can be quite large and bf16 would lose a lot of precision
109
+ self.dim, self.base, self.pos_idx_in_fp32, self.device = (
110
+ dim,
111
+ float(base),
112
+ pos_idx_in_fp32,
113
+ device,
114
+ )
115
+ self.max_position_embeddings = max_position_embeddings
116
+ if scale_base is not None:
117
+ raise NotImplementedError
118
+
119
+ # Generate and register the non-trainable buffers
120
+ self.register_buffer(
121
+ "inv_freq", self._compute_inv_freq(device), persistent=False
122
+ )
123
+ self.register_buffer(
124
+ "scale", self._calculate_scale(dim, scale_base, device), persistent=False
125
+ )
126
+ self._update_cos_sin_cache(
127
+ max_position_embeddings, device=device, dtype=torch.float32
128
+ )
129
+
130
+ def _calculate_scale(self, dim, scale_base, device):
131
+ return (
132
+ (
133
+ (
134
+ torch.arange(0, dim, 2, device=device, dtype=torch.float32)
135
+ + 0.4 * dim
136
+ )
137
+ / (1.4 * dim)
138
+ )
139
+ if scale_base is not None
140
+ else None
141
+ )
142
+
143
+ def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
144
+ return 1.0 / (
145
+ self.base
146
+ ** (
147
+ torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
148
+ / self.dim
149
+ )
150
+ )
151
+
152
+ def _update_cos_sin_cache(
153
+ self,
154
+ seqlen: int,
155
+ device: Optional[str] = None,
156
+ dtype: Optional[torch.dtype] = None,
157
+ ) -> None:
158
+ self._seq_len_cached = seqlen
159
+ t = torch.arange(
160
+ seqlen,
161
+ device=device,
162
+ dtype=torch.float32 if self.pos_idx_in_fp32 else self.inv_freq.dtype,
163
+ )
164
+ inv_freq = (
165
+ self._compute_inv_freq(device=device)
166
+ if self.pos_idx_in_fp32 and self.inv_freq.dtype != torch.float32
167
+ else self.inv_freq
168
+ )
169
+
170
+ freqs = torch.outer(t, inv_freq)
171
+
172
+ def apply_scale(freqs, scale, operator, dtype):
173
+ result = operator(freqs)
174
+ return (result / scale).to(dtype) if scale is not None else result.to(dtype)
175
+
176
+ if scale := self.scale:
177
+ power = (
178
+ torch.arange(seqlen, dtype=scale.dtype, device=scale.device)
179
+ - seqlen // 2
180
+ ) / self.scale_base
181
+ scale = scale.to(device=power.device) ** power.unsqueeze(1)
182
+
183
+ self._cos_cached = apply_scale(
184
+ freqs, 1 / scale if scale is not None else None, torch.cos, dtype
185
+ )
186
+ self._sin_cached = apply_scale(
187
+ freqs, 1 / scale if scale is not None else None, torch.sin, dtype
188
+ )
189
+ if scale is not None:
190
+ self._cos_k_cached = apply_scale(freqs, scale, torch.cos, dtype)
191
+ self._sin_k_cached = apply_scale(freqs, scale, torch.sin, dtype)
192
+
193
+ def forward(
194
+ self,
195
+ qkv: torch.Tensor,
196
+ kv: Optional[torch.Tensor] = None,
197
+ seqlen_offset: int = 0,
198
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
199
+ should_update = (
200
+ self._seq_len_cached < qkv.shape[1] + seqlen_offset
201
+ or self._cos_cached.device != qkv.device
202
+ or self._cos_cached.dtype != qkv.dtype
203
+ or (self.training and self._cos_cached.is_inference())
204
+ )
205
+
206
+ if should_update:
207
+ self._update_cos_sin_cache(
208
+ qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype
209
+ )
210
+
211
+ offset_cos = self._cos_cached[seqlen_offset:]
212
+ offset_sin = self._sin_cached[seqlen_offset:]
213
+
214
+ if kv is None:
215
+ return _apply_rotary_emb_qkv(qkv, offset_cos, offset_sin)
216
+ else:
217
+ return _apply_rotary_emb(qkv, offset_cos, offset_sin), _apply_rotary_emb_kv(
218
+ kv, offset_cos, offset_sin
219
+ )
220
+
221
+
222
+ class MLP(nn.Module):
223
+ def __init__(
224
+ self,
225
+ config: PretrainedConfig,
226
+ n_inner: Optional[int] = None,
227
+ act_fn: Optional[str] = None,
228
+ ) -> None:
229
+ super().__init__()
230
+ n_inner = n_inner or getattr(config, "n_inner", None) or 4 * config.n_embd
231
+ act_fn = act_fn or config.activation_function
232
+
233
+ self.fc1 = nn.Linear(config.n_embd, n_inner)
234
+ self.fc2 = nn.Linear(n_inner, config.n_embd)
235
+ self.act = ACT2FN[act_fn]
236
+
237
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
238
+ return self.fc2(self.act(self.fc1(hidden_states)))
239
+
240
+
241
+ # Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py)
242
+ class SelfAttention(nn.Module):
243
+ def __init__(
244
+ self,
245
+ causal: bool = True,
246
+ softmax_scale: Optional[float] = None,
247
+ attention_dropout: float = 0.0,
248
+ ):
249
+ super().__init__()
250
+ self.causal = causal
251
+ self.softmax_scale = softmax_scale
252
+ self.drop = nn.Dropout(attention_dropout)
253
+
254
+ @torch.autocast("cpu", enabled=False)
255
+ @torch.autocast("cuda", enabled=False)
256
+ def forward(
257
+ self,
258
+ qkv: torch.FloatTensor,
259
+ causal: Optional[bool] = None,
260
+ key_padding_mask: Optional[torch.BoolTensor] = None,
261
+ ):
262
+ q, k, v = qkv.chunk(3, dim=-1)
263
+ scale = self.softmax_scale or 1.0 / q.size(-1) ** 0.5
264
+
265
+ scores = (
266
+ torch.einsum("bthd,bshd->bhts", q.to(torch.float32), k.to(torch.float32))
267
+ * scale
268
+ )
269
+ if causal or self.causal:
270
+ scores.triu_(1).fill_(-10000.0)
271
+ if key_padding_mask is not None:
272
+ scores.masked_fill_(key_padding_mask[:, None, None, :], -10000.0)
273
+
274
+ attn = self.drop(torch.softmax(scores, dim=-1).to(v.dtype))
275
+ return torch.einsum("bhts,bshd->bthd", attn, v)
276
+
277
+
278
+ # Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py)
279
+ class CrossAttention(nn.Module):
280
+ def __init__(self, causal=True, softmax_scale=None, attention_dropout=0.0):
281
+ super().__init__()
282
+ self.causal = causal
283
+ self.softmax_scale = softmax_scale
284
+ self.drop = nn.Dropout(attention_dropout)
285
+
286
+ @torch.autocast("cpu", enabled=False)
287
+ @torch.autocast("cuda", enabled=False)
288
+ def forward(
289
+ self,
290
+ q: torch.FloatTensor,
291
+ kv: torch.FloatTensor,
292
+ causal: bool = None,
293
+ key_padding_mask: Optional[torch.BoolTensor] = None,
294
+ ) -> torch.FloatTensor:
295
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
296
+ seqlen_k = kv.shape[1]
297
+
298
+ if kv.shape[3] != q.shape[2]:
299
+ kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
300
+ k, v = kv.unbind(dim=2)
301
+
302
+ q = q.to(torch.float32)
303
+ k = k.to(torch.float32)
304
+
305
+ causal = self.causal if causal is None else causal
306
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
307
+
308
+ # Autocast is manually disabled to avoid `torch.einsum` performing the operation using float16, which might lead to overflow
309
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
310
+
311
+ if key_padding_mask is not None:
312
+ padding_mask = torch.full(
313
+ (batch_size, seqlen_k),
314
+ -10000.0,
315
+ dtype=scores.dtype,
316
+ device=scores.device,
317
+ )
318
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
319
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
320
+
321
+ if causal:
322
+ rows = rearrange(
323
+ torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
324
+ )
325
+ cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
326
+ causal_mask = cols > rows + seqlen_k - seqlen_q
327
+ scores = scores.masked_fill(causal_mask, -10000.0)
328
+
329
+ attention = torch.softmax(scores, dim=-1).to(v.dtype)
330
+ attention = self.drop(attention)
331
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
332
+
333
+ return output
334
+
335
+
336
+ def _find_mha_dims(
337
+ config: PretrainedConfig,
338
+ n_head: Optional[int] = None,
339
+ n_head_kv: Optional[int] = None,
340
+ head_dim: Optional[int] = None,
341
+ ) -> Tuple[int, int]:
342
+ if n_head is None and head_dim is None:
343
+ head_dim = config.n_embd // config.n_head
344
+ n_head = config.n_head
345
+ elif n_head is None or head_dim is None:
346
+ raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
347
+ if n_head_kv is None:
348
+ n_head_kv = getattr(config, "n_head_kv", None) or n_head
349
+ return n_head, n_head_kv, head_dim
350
+
351
+
352
+ def _update_kv_cache(
353
+ kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
354
+ ) -> torch.FloatTensor:
355
+ num_heads, head_dim = kv.shape[-2:]
356
+ layer_memory = inference_params.key_value_memory_dict.setdefault(
357
+ layer_idx,
358
+ torch.empty(
359
+ inference_params.max_batch_size,
360
+ inference_params.max_seqlen,
361
+ 2,
362
+ num_heads,
363
+ head_dim,
364
+ dtype=kv.dtype,
365
+ device=kv.device,
366
+ ),
367
+ )
368
+
369
+ batch_slice = slice(
370
+ inference_params.batch_size_offset,
371
+ inference_params.batch_size_offset + kv.shape[0],
372
+ )
373
+ seqlen_slice = slice(
374
+ inference_params.seqlen_offset, inference_params.seqlen_offset + kv.shape[1]
375
+ )
376
+
377
+ if seqlen_slice.stop >= inference_params.max_seqlen:
378
+ layer_memory = torch.cat((layer_memory, kv), dim=1)
379
+ inference_params.key_value_memory_dict[layer_idx] = layer_memory
380
+
381
+ layer_memory[batch_slice, seqlen_slice, ...] = kv
382
+ return layer_memory[batch_slice, : seqlen_slice.stop, ...]
383
+
384
+
385
+ # Multi-head attention layer with rotary embeddings
386
+ class MHA(nn.Module):
387
+ def __init__(
388
+ self,
389
+ config,
390
+ dtype=None,
391
+ device=None,
392
+ rotary_dim=None,
393
+ rotary_base=10000.0,
394
+ rotary_scale_base=None,
395
+ n_head=None,
396
+ n_head_kv=None,
397
+ head_dim=None,
398
+ bias=True,
399
+ causal=True,
400
+ softmax_scale=None,
401
+ layer_idx=None,
402
+ return_residual=False,
403
+ checkpointing=False,
404
+ ):
405
+ super().__init__()
406
+
407
+ # Set rotary embedding if specified
408
+ self.rotary_dim = rotary_dim or getattr(config, "rotary_dim", 0)
409
+ if self.rotary_dim:
410
+ self.rotary_emb = RotaryEmbedding(
411
+ self.rotary_dim,
412
+ base=rotary_base,
413
+ scale_base=rotary_scale_base,
414
+ device=device,
415
+ max_position_embeddings=config.n_positions,
416
+ )
417
+
418
+ # Determine MHA dims from arguments or config
419
+ self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
420
+ config, n_head, n_head_kv, head_dim
421
+ )
422
+ op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
423
+ hidden_size = config.n_embd
424
+
425
+ # Choose Linear class based on config, FusedDense is optional
426
+ LinearClass = (
427
+ FusedDense if config.fused_dense and FusedDense is not None else nn.Linear
428
+ )
429
+ self.Wqkv = LinearClass(
430
+ hidden_size, op_size, bias=bias, device=device, dtype=dtype
431
+ )
432
+ self.out_proj = LinearClass(
433
+ hidden_size, hidden_size, bias=bias, device=device, dtype=dtype
434
+ )
435
+
436
+ # Initialize attention mechanisms
437
+ attn_kwargs = {
438
+ "causal": causal,
439
+ "softmax_scale": softmax_scale,
440
+ "attention_dropout": config.attn_pdrop,
441
+ }
442
+ self.inner_attn = SelfAttention(**attn_kwargs)
443
+ self.inner_cross_attn = CrossAttention(**attn_kwargs)
444
+
445
+ self.layer_idx = layer_idx
446
+ self.return_residual = return_residual
447
+ self.checkpointing = checkpointing
448
+
449
+ def _forward_self_attn(
450
+ self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
451
+ ) -> torch.FloatTensor:
452
+ qkv = rearrange(
453
+ self.Wqkv(x), "... (three h d) -> ... three h d", three=3, d=self.head_dim
454
+ )
455
+ if self.rotary_dim > 0:
456
+ qkv = self.rotary_emb(qkv)
457
+ attn_func = (
458
+ torch.utils.checkpoint.checkpoint
459
+ if self.checkpointing
460
+ else lambda f, *args, **kwargs: f(*args, **kwargs)
461
+ )
462
+ return attn_func(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
463
+
464
+ def _forward_cross_attn(
465
+ self,
466
+ x: torch.FloatTensor,
467
+ past_key_values: Optional[InferenceParams],
468
+ key_padding_mask: Optional[torch.BoolTensor],
469
+ ) -> torch.FloatTensor:
470
+ qkv = self.Wqkv(x)
471
+ q, kv = (
472
+ qkv[..., : self.n_head * self.head_dim],
473
+ qkv[..., self.n_head * self.head_dim :],
474
+ )
475
+ q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
476
+ kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
477
+
478
+ seqlen_offset = (
479
+ past_key_values.seqlen_offset if past_key_values is not None else 0
480
+ )
481
+ causal = None if seqlen_offset == 0 else False
482
+ if self.rotary_dim > 0:
483
+ q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
484
+
485
+ if past_key_values is not None:
486
+ kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
487
+
488
+ attn_func = (
489
+ torch.utils.checkpoint.checkpoint
490
+ if self.checkpointing
491
+ else lambda fn, *args, **kwargs: fn(*args, **kwargs)
492
+ )
493
+
494
+ return attn_func(
495
+ self.inner_cross_attn,
496
+ q,
497
+ kv,
498
+ key_padding_mask=key_padding_mask,
499
+ causal=causal,
500
+ )
501
+
502
+ def forward(
503
+ self,
504
+ x: torch.FloatTensor,
505
+ past_key_values: Optional[InferenceParams] = None,
506
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
507
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
508
+ attention_mask = attention_mask.bool() if attention_mask is not None else None
509
+ use_cross_attn = self.n_head != self.n_head_kv or past_key_values is not None
510
+ attn_output_function = (
511
+ self._forward_cross_attn if use_cross_attn else self._forward_self_attn
512
+ )
513
+ attn_output = (
514
+ attn_output_function(x, past_key_values, attention_mask)
515
+ if use_cross_attn
516
+ else attn_output_function(x, attention_mask)
517
+ )
518
+ output = self.out_proj(rearrange(attn_output, "... h d -> ... (h d)"))
519
+ return (output, x) if self.return_residual else output
520
+
521
+
522
+ # Parallel block. This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
523
+ class ParallelBlock(nn.Module):
524
+ def __init__(self, config: PretrainedConfig, block_idx: Optional[int] = None):
525
+ super().__init__()
526
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
527
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
528
+ self.block_idx = block_idx
529
+ self.mixer = MHA(config, layer_idx=block_idx)
530
+ self.mlp = MLP(config)
531
+
532
+ def forward(
533
+ self,
534
+ hidden_states: torch.FloatTensor,
535
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
536
+ attention_mask: Optional[torch.BoolTensor] = None,
537
+ ) -> torch.FloatTensor:
538
+ residual = hidden_states
539
+ hidden_states = self.ln(hidden_states)
540
+
541
+ attn_outputs = self.mixer(
542
+ hidden_states,
543
+ past_key_values=past_key_values,
544
+ attention_mask=attention_mask,
545
+ )
546
+ if isinstance(attn_outputs, tuple):
547
+ attn_outputs = attn_outputs[0]
548
+
549
+ attn_outputs = self.resid_dropout(attn_outputs)
550
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
551
+ return attn_outputs + feed_forward_hidden_states + residual
552
+
553
+
554
+ class CausalLMHead(nn.Module):
555
+ """Causal Language Modeling head. Simplified version."""
556
+
557
+ def __init__(self, config):
558
+ super().__init__()
559
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
560
+ self.linear = nn.Linear(config.n_embd, config.vocab_size)
561
+
562
+ def forward(self, hidden_states):
563
+ return self.linear(self.ln(hidden_states)).to(torch.float32)
564
+
565
+
566
+ # Improving Language Understanding by Generative Pre-Training
567
+ # (https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf)
568
+ class CausalLMLoss(nn.Module):
569
+ def __init__(self, shift_labels: bool = True) -> None:
570
+ super().__init__()
571
+ self.shift_labels = shift_labels
572
+ self.loss_fct = nn.CrossEntropyLoss()
573
+
574
+ def forward(
575
+ self, logits: torch.FloatTensor, labels: torch.LongTensor
576
+ ) -> torch.FloatTensor:
577
+ if self.shift_labels:
578
+ logits, labels = logits[..., :-1, :], labels[..., 1:]
579
+ return self.loss_fct(logits.reshape(-1, logits.size(-1)), labels.reshape(-1))
580
+
581
+
582
+ class PhiPreTrainedModel(PreTrainedModel):
583
+ config_class = PhiConfig
584
+ base_model_prefix = "transformer"
585
+ supports_gradient_checkpointing = False
586
+ _no_split_modules = ["ParallelBlock"]
587
+
588
+ def __init__(self, *inputs, **kwargs) -> None:
589
+ super().__init__(*inputs, **kwargs)
590
+
591
+ def prepare_inputs_for_generation(
592
+ self,
593
+ input_ids: torch.LongTensor = None,
594
+ inputs_embeds: torch.FloatTensor = None,
595
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
596
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
597
+ **kwargs,
598
+ ) -> Dict[str, Any]:
599
+ if input_ids is None and inputs_embeds is None:
600
+ raise ValueError(
601
+ "You have to specify either `input_ids` or `inputs_embeds`."
602
+ )
603
+
604
+ max_batch_size = (
605
+ inputs_embeds.shape[0] if inputs_embeds is not None else input_ids.shape[0]
606
+ )
607
+ seqlen_offset = (
608
+ inputs_embeds.shape[1] + input_ids.shape[1] - 2
609
+ if inputs_embeds is not None
610
+ else input_ids.shape[1] - 1
611
+ )
612
+
613
+ args = (
614
+ {"inputs_embeds": inputs_embeds}
615
+ if inputs_embeds is not None
616
+ else {"input_ids": input_ids}
617
+ )
618
+
619
+ if not isinstance(past_key_values, InferenceParams):
620
+ past_key_values = InferenceParams(
621
+ max_seqlen=self.config.n_positions,
622
+ max_batch_size=max_batch_size,
623
+ seqlen_offset=0,
624
+ batch_size_offset=0,
625
+ key_value_memory_dict={},
626
+ lengths_per_sample=None,
627
+ )
628
+ else:
629
+ past_key_values.seqlen_offset = seqlen_offset
630
+ args = {"input_ids": input_ids[:, -1].unsqueeze(-1)}
631
+
632
+ return {
633
+ **args,
634
+ "past_key_values": past_key_values,
635
+ "attention_mask": attention_mask,
636
+ }
637
+
638
+
639
+ class PhiModel(PhiPreTrainedModel):
640
+ _keys_to_ignore_on_load_missing = [""]
641
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
642
+
643
+ def __init__(self, config: PhiConfig) -> None:
644
+ super().__init__(config)
645
+ self.embd = Embedding(config)
646
+ self.h = nn.ModuleList(
647
+ [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
648
+ )
649
+ self.gradient_checkpointing = config.gradient_checkpointing
650
+ self.post_init()
651
+
652
+ def get_input_embeddings(self) -> nn.Embedding:
653
+ return self.embd.wte
654
+
655
+ def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
656
+ self.embd.wte = new_embeddings
657
+
658
+ def forward(
659
+ self,
660
+ input_ids: torch.LongTensor = None,
661
+ inputs_embeds: torch.FloatTensor = None,
662
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
663
+ attention_mask: Optional[torch.BoolTensor] = None,
664
+ ) -> torch.FloatTensor:
665
+ if (input_ids is None) == (inputs_embeds is None):
666
+ raise ValueError("Specify exactly one of `input_ids` or `inputs_embeds`.")
667
+ hidden_states = self.embd(input_ids) if input_ids is not None else inputs_embeds
668
+
669
+ for layer in self.h:
670
+ func = layer.__call__ if self.gradient_checkpointing else layer
671
+ args = (hidden_states, past_key_values, attention_mask)
672
+ hidden_states = (
673
+ torch.utils.checkpoint.checkpoint(func, *args, use_reentrant=True)
674
+ if self.gradient_checkpointing
675
+ else func(*args)
676
+ )
677
+
678
+ return hidden_states
679
+
680
+
681
+ class PhiForCausalLM(PhiPreTrainedModel):
682
+ _keys_to_ignore_on_load_missing, _keys_to_ignore_on_load_unexpected = (
683
+ [""],
684
+ [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"],
685
+ )
686
+
687
+ def __init__(self, config: PhiConfig) -> None:
688
+ super().__init__(config)
689
+ self.transformer = PhiModel(config)
690
+ self.lm_head = CausalLMHead(config)
691
+ self.loss = CausalLMLoss()
692
+ self.post_init()
693
+
694
+ def get_output_embeddings(self) -> nn.Linear:
695
+ return self.lm_head.linear
696
+
697
+ def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
698
+ self.lm_head.linear = new_embeddings
699
+
700
+ def forward(
701
+ self,
702
+ input_ids: torch.LongTensor = None,
703
+ inputs_embeds: torch.FloatTensor = None,
704
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
705
+ attention_mask: Optional[torch.BoolTensor] = None,
706
+ labels: Optional[torch.LongTensor] = None,
707
+ **kwargs,
708
+ ) -> CausalLMOutputWithPast:
709
+ hidden_states = self.transformer(
710
+ input_ids=input_ids,
711
+ inputs_embeds=inputs_embeds,
712
+ past_key_values=past_key_values,
713
+ attention_mask=attention_mask,
714
+ )
715
+ lm_logits = self.lm_head(hidden_states)
716
+ loss = self.loss(lm_logits, labels) if labels is not None else None
717
+
718
+ return CausalLMOutputWithPast(
719
+ loss=loss, logits=lm_logits, past_key_values=past_key_values
720
+ )
moondream/moondream.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from .vision_encoder import VisionEncoder
4
+ from .configuration_moondream import MoondreamConfig
5
+ from transformers import PreTrainedModel
6
+ import re
7
+
8
+ from .modeling_phi import PhiForCausalLM
9
+ from .configuration_moondream import PhiConfig
10
+
11
+ class Moondream(PreTrainedModel):
12
+ config_class = MoondreamConfig
13
+
14
+ def __init__(self, config):
15
+ super().__init__(config)
16
+ self.vision_encoder = VisionEncoder()
17
+
18
+ if type(config.phi_config) == dict:
19
+ phi_config = PhiConfig(**config.phi_config)
20
+ else:
21
+ phi_config = config.phi_config
22
+ self.text_model = PhiForCausalLM(phi_config)
23
+
24
+ @property
25
+ def device(self):
26
+ return self.text_model.device
27
+
28
+ def encode_image(self, image):
29
+ return self.vision_encoder(image)
30
+
31
+ def input_embeds(self, prompt, image_embeds, tokenizer):
32
+ def _tokenize(txt):
33
+ return tokenizer(
34
+ txt, return_tensors="pt", add_special_tokens=False
35
+ ).input_ids.to(self.device)
36
+
37
+ text_emb = self.text_model.get_input_embeddings()
38
+
39
+ # Add BOS token
40
+ embeds = []
41
+ embeds.append(
42
+ text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
43
+ )
44
+
45
+ if "<image>" not in prompt:
46
+ embeds.append(text_emb(_tokenize(prompt)))
47
+ else:
48
+ assert prompt.count("<image>") == 1
49
+ before, after = prompt.split("<image>")
50
+ embeds.append(text_emb(_tokenize(f"{before}<image>")))
51
+ embeds.append(image_embeds.to(self.device))
52
+ embeds.append(text_emb(_tokenize(f"</image>{after}")))
53
+
54
+ return torch.cat(embeds, dim=1)
55
+
56
+ def generate(
57
+ self,
58
+ image_embeds,
59
+ prompt,
60
+ tokenizer,
61
+ eos_text="<END>",
62
+ max_new_tokens=128,
63
+ **kwargs,
64
+ ):
65
+ eos_tokens = tokenizer(eos_text, add_special_tokens=False)[0].ids
66
+
67
+ generate_config = {
68
+ "eos_token_id": eos_tokens,
69
+ "bos_token_id": tokenizer.bos_token_id,
70
+ "pad_token_id": tokenizer.eos_token_id,
71
+ "max_new_tokens": max_new_tokens,
72
+ **kwargs,
73
+ }
74
+
75
+ with torch.no_grad():
76
+ inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
77
+ output_ids = self.text_model.generate(
78
+ inputs_embeds=inputs_embeds, **generate_config
79
+ )
80
+
81
+ return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
82
+
83
+ def answer_question(
84
+ self,
85
+ image_embeds,
86
+ question,
87
+ tokenizer,
88
+ chat_history="",
89
+ result_queue=None,
90
+ **kwargs,
91
+ ):
92
+ prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer: "
93
+ answer = self.generate(
94
+ image_embeds,
95
+ prompt,
96
+ eos_text="<END>",
97
+ tokenizer=tokenizer,
98
+ max_new_tokens=256,
99
+ **kwargs,
100
+ )[0]
101
+ cleaned_answer = re.sub("<$", "", re.sub("END$", "", answer)).strip()
102
+
103
+ # Use the result_queue to pass the result if it is provided
104
+ if result_queue:
105
+ result_queue.put(cleaned_answer)
106
+ else:
107
+ return cleaned_answer
moondream/util.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def detect_device():
5
+ """
6
+ Detects the appropriate device to run on, and return the device and dtype.
7
+ """
8
+ if torch.cuda.is_available():
9
+ return torch.device("cuda"), torch.float16
10
+ elif torch.backends.mps.is_available():
11
+ return torch.device("mps"), torch.float16
12
+ else:
13
+ return torch.device("cpu"), torch.float32
moondream/vision_encoder.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from PIL import Image
4
+ from einops import rearrange
5
+ from torchvision.transforms.v2 import (
6
+ Compose,
7
+ Resize,
8
+ InterpolationMode,
9
+ ToImage,
10
+ ToDtype,
11
+ Normalize,
12
+ )
13
+ import timm
14
+
15
+
16
+ class VisualHolder(nn.Module):
17
+ def __init__(self, model):
18
+ super().__init__()
19
+ self.visual = model
20
+
21
+ def forward(self, x):
22
+ return self.visual(x)
23
+
24
+
25
+ class ModelHolder(nn.Module):
26
+ def __init__(self, model):
27
+ super().__init__()
28
+ self.model = model
29
+
30
+ def forward(self, x):
31
+ return self.model(x)
32
+
33
+
34
+ class LinearPatchEmbedding(nn.Module):
35
+ def __init__(self, conv):
36
+ super().__init__()
37
+ self.linear = nn.Linear(588, 1152)
38
+ self.linear.weight.data = conv.weight.data.view(1152, -1)
39
+ if conv.bias is not None:
40
+ self.linear.bias.data = conv.bias.data
41
+
42
+ def forward(self, x):
43
+ return self.linear(x)
44
+
45
+
46
+ class MLP(nn.Module):
47
+ def __init__(
48
+ self,
49
+ in_features: int,
50
+ hidden_features: int = None,
51
+ out_features: int = None,
52
+ act_layer: nn.Module = nn.GELU,
53
+ ) -> None:
54
+ super().__init__()
55
+ out_features = out_features or in_features
56
+ hidden_features = hidden_features or in_features
57
+ self.fc1 = nn.Linear(in_features, hidden_features)
58
+ self.act = act_layer()
59
+ self.fc2 = nn.Linear(hidden_features, out_features)
60
+
61
+ torch.nn.init.kaiming_normal_(
62
+ self.fc1.weight, mode="fan_in", nonlinearity="relu"
63
+ )
64
+ torch.nn.init.kaiming_normal_(
65
+ self.fc2.weight, mode="fan_in", nonlinearity="relu"
66
+ )
67
+
68
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
69
+ x = self.fc1(x)
70
+ x = self.act(x)
71
+ x = self.fc2(x)
72
+ return x
73
+
74
+
75
+ class VisionProjection(nn.Module):
76
+ def __init__(self):
77
+ super().__init__()
78
+
79
+ image_embedding_dim = 1152
80
+ model_dim = 2048
81
+ hidden_dim = model_dim * 4
82
+
83
+ self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim)
84
+
85
+ @property
86
+ def device(self):
87
+ return self.mlp.fc1.weight.device
88
+
89
+ def forward(self, x):
90
+ return self.mlp(x)
91
+
92
+
93
+ class VisionEncoder(nn.Module):
94
+ def __init__(self) -> None:
95
+ super().__init__()
96
+
97
+ self.encoder = ModelHolder(
98
+ VisualHolder(timm.create_model("vit_so400m_patch14_siglip_384"))
99
+ )
100
+ self.encoder.model.visual.patch_embed = LinearPatchEmbedding(
101
+ self.encoder.model.visual.patch_embed.proj
102
+ )
103
+ self.encoder.model.visual.attn_pool = nn.Identity()
104
+
105
+ self.projection = VisionProjection()
106
+
107
+ self.preprocess = Compose(
108
+ [
109
+ Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC),
110
+ ToImage(),
111
+ ToDtype(torch.float32, scale=True),
112
+ Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
113
+ ]
114
+ )
115
+
116
+ @property
117
+ def device(self):
118
+ return self.projection.mlp.fc1.weight.device
119
+
120
+ @property
121
+ def dtype(self):
122
+ return self.projection.mlp.fc1.weight.dtype
123
+
124
+ def __call__(self, image: Image) -> torch.Tensor:
125
+ with torch.no_grad():
126
+ x = (
127
+ self.preprocess(image.convert("RGB"))
128
+ .unsqueeze(0)
129
+ .to(self.device, dtype=self.dtype)
130
+ )
131
+ x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14)
132
+
133
+ x = self.encoder(x)
134
+ x = self.projection(x)
135
+
136
+ return x
omnichat.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import json
4
+ from PIL import Image
5
+ import base64
6
+ import io
7
+ from accelerate import load_checkpoint_and_dispatch, init_empty_weights
8
+ from transformers import AutoTokenizer, AutoModel
9
+
10
+ from omnilmm.utils import disable_torch_init
11
+ from omnilmm.model.omnilmm import OmniLMMForCausalLM
12
+ from omnilmm.model.utils import build_transform
13
+ from omnilmm.train.train_utils import omni_preprocess
14
+
15
+ DEFAULT_IMAGE_TOKEN = "<image>"
16
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
17
+ DEFAULT_IM_START_TOKEN = "<im_start>"
18
+ DEFAULT_IM_END_TOKEN = "<im_end>"
19
+
20
+
21
+
22
+ def init_omni_lmm(model_path):
23
+ torch.backends.cuda.matmul.allow_tf32 = True
24
+ disable_torch_init()
25
+ model_name = os.path.expanduser(model_path)
26
+ print(f'Load omni_lmm model and tokenizer from {model_name}')
27
+ tokenizer = AutoTokenizer.from_pretrained(
28
+ model_name, model_max_length=2048)
29
+
30
+ if False:
31
+ # model on multiple devices for small size gpu memory (Nvidia 3090 24G x2)
32
+ with init_empty_weights():
33
+ model = OmniLMMForCausalLM.from_pretrained(model_name, tune_clip=True, torch_dtype=torch.bfloat16)
34
+ model = load_checkpoint_and_dispatch(model, model_name, dtype=torch.bfloat16,
35
+ device_map="auto", no_split_module_classes=['Eva','MistralDecoderLayer', 'ModuleList', 'Resampler']
36
+ )
37
+ else:
38
+ model = OmniLMMForCausalLM.from_pretrained(
39
+ model_name, tune_clip=True, torch_dtype=torch.bfloat16
40
+ ).to(device='cuda', dtype=torch.bfloat16)
41
+
42
+ image_processor = build_transform(
43
+ is_train=False, input_size=model.model.config.image_size, std_mode='OPENAI_CLIP')
44
+
45
+ mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
46
+ assert mm_use_im_start_end
47
+
48
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN,
49
+ DEFAULT_IM_END_TOKEN], special_tokens=True)
50
+
51
+
52
+ vision_config = model.model.vision_config
53
+ vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
54
+ [DEFAULT_IMAGE_PATCH_TOKEN])[0]
55
+ vision_config.use_im_start_end = mm_use_im_start_end
56
+ vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids(
57
+ [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
58
+ image_token_len = model.model.config.num_query
59
+
60
+ return model, image_processor, image_token_len, tokenizer
61
+
62
+ def expand_question_into_multimodal(question_text, image_token_len, im_st_token, im_ed_token, im_patch_token):
63
+ if '<image>' in question_text[0]['content']:
64
+ question_text[0]['content'] = question_text[0]['content'].replace(
65
+ '<image>', im_st_token + im_patch_token * image_token_len + im_ed_token)
66
+ else:
67
+ question_text[0]['content'] = im_st_token + im_patch_token * \
68
+ image_token_len + im_ed_token + '\n' + question_text[0]['content']
69
+ return question_text
70
+
71
+ def wrap_question_for_omni_lmm(question, image_token_len, tokenizer):
72
+ question = expand_question_into_multimodal(
73
+ question, image_token_len, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN)
74
+
75
+ conversation = question
76
+ data_dict = omni_preprocess(sources=[conversation],
77
+ tokenizer=tokenizer,
78
+ generation=True)
79
+
80
+ data_dict = dict(input_ids=data_dict["input_ids"][0],
81
+ labels=data_dict["labels"][0])
82
+ return data_dict
83
+
84
+
85
+
86
+ class OmniLMM12B:
87
+ def __init__(self, model_path) -> None:
88
+ model, img_processor, image_token_len, tokenizer = init_omni_lmm(model_path)
89
+ self.model = model
90
+ self.image_token_len = image_token_len
91
+ self.image_transform = img_processor
92
+ self.tokenizer = tokenizer
93
+ self.model.eval()
94
+
95
+ def decode(self, image, input_ids):
96
+ with torch.inference_mode():
97
+ output = self.model.generate_vllm(
98
+ input_ids=input_ids.unsqueeze(0).cuda(),
99
+ images=image.unsqueeze(0).half().cuda(),
100
+ temperature=0.6,
101
+ max_new_tokens=1024,
102
+ # num_beams=num_beams,
103
+ do_sample=True,
104
+ output_scores=True,
105
+ return_dict_in_generate=True,
106
+ repetition_penalty=1.1,
107
+ top_k=30,
108
+ top_p=0.9,
109
+ )
110
+
111
+ response = self.tokenizer.decode(
112
+ output.sequences[0], skip_special_tokens=True)
113
+ response = response.strip()
114
+ return response
115
+
116
+ def chat(self, input):
117
+ try:
118
+ image = Image.open(io.BytesIO(base64.b64decode(input['image']))).convert('RGB')
119
+ except Exception as e:
120
+ return "Image decode error"
121
+
122
+ msgs = json.loads(input['question'])
123
+ input_ids = wrap_question_for_omni_lmm(
124
+ msgs, self.image_token_len, self.tokenizer)['input_ids']
125
+ input_ids = torch.as_tensor(input_ids)
126
+ #print('input_ids', input_ids)
127
+ image = self.image_transform(image)
128
+
129
+ out = self.decode(image, input_ids)
130
+
131
+ return out
132
+
133
+
134
+ def img2base64(file_name):
135
+ with open(file_name, 'rb') as f:
136
+ encoded_string = base64.b64encode(f.read())
137
+ return encoded_string
138
+
139
+ class OmniLMM3B:
140
+ def __init__(self, model_path) -> None:
141
+ self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.bfloat16)
142
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
143
+ self.model.eval().cuda()
144
+
145
+ def chat(self, input):
146
+ try:
147
+ image = Image.open(io.BytesIO(base64.b64decode(input['image']))).convert('RGB')
148
+ except Exception as e:
149
+ return "Image decode error"
150
+
151
+ msgs = json.loads(input['question'])
152
+
153
+ answer, context, _ = self.model.chat(
154
+ image=image,
155
+ msgs=msgs,
156
+ context=None,
157
+ tokenizer=self.tokenizer,
158
+ sampling=True,
159
+ temperature=0.7
160
+ )
161
+ return answer
162
+
163
+ class MiniCPMV2_5:
164
+ def __init__(self, model_path) -> None:
165
+ self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.float16)
166
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
167
+ self.model.eval().cuda()
168
+
169
+ def chat(self, input):
170
+ try:
171
+ image = Image.open(io.BytesIO(base64.b64decode(input['image']))).convert('RGB')
172
+ except Exception as e:
173
+ return "Image decode error"
174
+
175
+ msgs = json.loads(input['question'])
176
+
177
+ answer = self.model.chat(
178
+ image=image,
179
+ msgs=msgs,
180
+ tokenizer=self.tokenizer,
181
+ sampling=True,
182
+ temperature=0.7
183
+ )
184
+ return answer
185
+
186
+
187
+ class OmniLMMChat:
188
+ def __init__(self, model_path) -> None:
189
+ if '12B' in model_path:
190
+ self.model = OmniLMM12B(model_path)
191
+ elif 'MiniCPM-Llama3-V' in model_path:
192
+ self.model = MiniCPMV2_5(model_path)
193
+ else:
194
+ self.model = OmniLMM3B(model_path)
195
+
196
+ def chat(self, input):
197
+ return self.model.chat(input)
198
+
199
+
200
+ if __name__ == '__main__':
201
+
202
+ model_path = 'openbmb/OmniLMM-12B'
203
+ chat_model = OmniLMMChat(model_path)
204
+
205
+ im_64 = img2base64('./assets/worldmap_ck.jpg')
206
+
207
+ # first round chat
208
+ msgs = [{"role": "user", "content": "What is interesting about this image?"}]
209
+ input = {"image": im_64, "question": json.dumps(msgs, ensure_ascii=True)}
210
+ answer = chat_model.chat(input)
211
+ print(msgs[-1]["content"]+'\n', answer)
212
+
213
+ # second round chat
214
+ msgs.append({"role": "assistant", "content": answer})
215
+ msgs.append({"role": "user", "content": "Where is China in the image"})
216
+ input = {"image": im_64,"question": json.dumps(msgs, ensure_ascii=True)}
217
+ answer = chat_model.chat(input)
218
+ print(msgs[-1]["content"]+'\n', answer)
219
+
omnilmm/__init__.py ADDED
File without changes
omnilmm/constants.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
2
+ WORKER_HEART_BEAT_INTERVAL = 15
3
+
4
+ LOGDIR = "."
omnilmm/conversation.py ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import auto, Enum
3
+ from typing import List, Tuple
4
+
5
+
6
+ class SeparatorStyle(Enum):
7
+ """Different separator style."""
8
+ SINGLE = auto()
9
+ TWO = auto()
10
+
11
+
12
+ @dataclasses.dataclass
13
+ class Conversation:
14
+ """A class that keeps all conversation history."""
15
+ system: str
16
+ roles: List[str]
17
+ messages: List[List[str]]
18
+ offset: int
19
+ sep_style: SeparatorStyle = SeparatorStyle.SINGLE
20
+ sep: str = "###"
21
+ sep2: str = None
22
+ version: str = "Unknown"
23
+
24
+ skip_next: bool = False
25
+
26
+ def get_prompt(self):
27
+ if self.sep_style == SeparatorStyle.SINGLE:
28
+ ret = self.system + self.sep
29
+ for role, message in self.messages:
30
+ if message:
31
+ if type(message) is tuple:
32
+ message, _, _ = message
33
+ ret += role + ": " + message + self.sep
34
+ else:
35
+ ret += role + ":"
36
+ return ret
37
+ elif self.sep_style == SeparatorStyle.TWO:
38
+ seps = [self.sep, self.sep2]
39
+ ret = self.system + seps[0]
40
+ for i, (role, message) in enumerate(self.messages):
41
+ if message:
42
+ if type(message) is tuple:
43
+ message, _, _ = message
44
+ ret += role + ": " + message + seps[i % 2]
45
+ else:
46
+ ret += role + ":"
47
+ return ret
48
+ else:
49
+ raise ValueError(f"Invalid style: {self.sep_style}")
50
+
51
+ def append_message(self, role, message):
52
+ self.messages.append([role, message])
53
+
54
+ def get_images(self, return_pil=False):
55
+ images = []
56
+ for i, (role, msg) in enumerate(self.messages[self.offset:]):
57
+ if i % 2 == 0:
58
+ if type(msg) is tuple:
59
+ import base64
60
+ from io import BytesIO
61
+ from PIL import Image
62
+ msg, image, image_process_mode = msg
63
+ if image_process_mode == "Pad":
64
+ def expand2square(pil_img, background_color=(122, 116, 104)):
65
+ width, height = pil_img.size
66
+ if width == height:
67
+ return pil_img
68
+ elif width > height:
69
+ result = Image.new(
70
+ pil_img.mode, (width, width), background_color)
71
+ result.paste(
72
+ pil_img, (0, (width - height) // 2))
73
+ return result
74
+ else:
75
+ result = Image.new(
76
+ pil_img.mode, (height, height), background_color)
77
+ result.paste(
78
+ pil_img, ((height - width) // 2, 0))
79
+ return result
80
+ image = expand2square(image)
81
+ elif image_process_mode == "Crop":
82
+ pass
83
+ elif image_process_mode == "Resize":
84
+ image = image.resize((224, 224))
85
+ else:
86
+ raise ValueError(
87
+ f"Invalid image_process_mode: {image_process_mode}")
88
+ max_hw, min_hw = max(image.size), min(image.size)
89
+ aspect_ratio = max_hw / min_hw
90
+ max_len, min_len = 800, 400
91
+ shortest_edge = int(
92
+ min(max_len / aspect_ratio, min_len, min_hw))
93
+ longest_edge = int(shortest_edge * aspect_ratio)
94
+ W, H = image.size
95
+ if H > W:
96
+ H, W = longest_edge, shortest_edge
97
+ else:
98
+ H, W = shortest_edge, longest_edge
99
+ image = image.resize((W, H))
100
+ if return_pil:
101
+ images.append(image)
102
+ else:
103
+ buffered = BytesIO()
104
+ image.save(buffered, format="JPEG")
105
+ img_b64_str = base64.b64encode(
106
+ buffered.getvalue()).decode()
107
+ images.append(img_b64_str)
108
+ return images
109
+
110
+ def to_gradio_chatbot(self):
111
+ ret = []
112
+ for i, (role, msg) in enumerate(self.messages[self.offset:]):
113
+ if i % 2 == 0:
114
+ if type(msg) is tuple:
115
+ import base64
116
+ from io import BytesIO
117
+ msg, image, image_process_mode = msg
118
+ max_hw, min_hw = max(image.size), min(image.size)
119
+ aspect_ratio = max_hw / min_hw
120
+ max_len, min_len = 800, 400
121
+ shortest_edge = int(
122
+ min(max_len / aspect_ratio, min_len, min_hw))
123
+ longest_edge = int(shortest_edge * aspect_ratio)
124
+ W, H = image.size
125
+ if H > W:
126
+ H, W = longest_edge, shortest_edge
127
+ else:
128
+ H, W = shortest_edge, longest_edge
129
+ image = image.resize((W, H))
130
+ # image = image.resize((224, 224))
131
+ buffered = BytesIO()
132
+ image.save(buffered, format="JPEG")
133
+ img_b64_str = base64.b64encode(
134
+ buffered.getvalue()).decode()
135
+ img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
136
+ msg = msg.replace('<image>', img_str)
137
+ ret.append([msg, None])
138
+ else:
139
+ ret[-1][-1] = msg
140
+ return ret
141
+
142
+ def copy(self):
143
+ return Conversation(
144
+ system=self.system,
145
+ roles=self.roles,
146
+ messages=[[x, y] for x, y in self.messages],
147
+ offset=self.offset,
148
+ sep_style=self.sep_style,
149
+ sep=self.sep,
150
+ sep2=self.sep2)
151
+
152
+ def dict(self):
153
+ if len(self.get_images()) > 0:
154
+ return {
155
+ "system": self.system,
156
+ "roles": self.roles,
157
+ "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
158
+ "offset": self.offset,
159
+ "sep": self.sep,
160
+ "sep2": self.sep2,
161
+ }
162
+ return {
163
+ "system": self.system,
164
+ "roles": self.roles,
165
+ "messages": self.messages,
166
+ "offset": self.offset,
167
+ "sep": self.sep,
168
+ "sep2": self.sep2,
169
+ }
170
+
171
+
172
+ conv_v1 = Conversation(
173
+ system="A chat between a curious human and an artificial intelligence assistant. "
174
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
175
+ roles=("Human", "Assistant"),
176
+ messages=(
177
+ ("Human", "Give three tips for staying healthy."),
178
+ ("Assistant",
179
+ "Sure, here are three tips for staying healthy:\n"
180
+ "1. Exercise regularly: Regular physical activity can help improve your overall health and wellbeing. "
181
+ "It can also help reduce your risk of chronic conditions such as obesity, diabetes, heart disease, "
182
+ "and certain cancers. Aim for at least 150 minutes of moderate-intensity aerobic exercise or "
183
+ "75 minutes of vigorous-intensity aerobic exercise per week, along with muscle-strengthening "
184
+ "activities at least two days per week.\n"
185
+ "2. Eat a balanced diet: Eating a balanced diet that is rich in fruits, "
186
+ "vegetables, whole grains, lean proteins, and healthy fats can help support "
187
+ "your overall health. Try to limit your intake of processed and high-sugar foods, "
188
+ "and aim to drink plenty of water throughout the day.\n"
189
+ "3. Get enough sleep: Getting enough quality sleep is essential for your physical "
190
+ "and mental health. Adults should aim for seven to nine hours of sleep per night. "
191
+ "Establish a regular sleep schedule and try to create a relaxing bedtime routine to "
192
+ "help improve the quality of your sleep.")
193
+ ),
194
+ offset=2,
195
+ sep_style=SeparatorStyle.SINGLE,
196
+ sep="###",
197
+ )
198
+
199
+ conv_v1_2 = Conversation(
200
+ system="A chat between a curious human and an artificial intelligence assistant. "
201
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
202
+ roles=("Human", "Assistant"),
203
+ messages=(
204
+ ("Human", "What are the key differences between renewable and non-renewable energy sources?"),
205
+ ("Assistant",
206
+ "Renewable energy sources are those that can be replenished naturally in a relatively "
207
+ "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
208
+ "Non-renewable energy sources, on the other hand, are finite and will eventually be "
209
+ "depleted, such as coal, oil, and natural gas. Here are some key differences between "
210
+ "renewable and non-renewable energy sources:\n"
211
+ "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
212
+ "energy sources are finite and will eventually run out.\n"
213
+ "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
214
+ "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
215
+ "and other negative effects.\n"
216
+ "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
217
+ "have lower operational costs than non-renewable sources.\n"
218
+ "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
219
+ "locations than non-renewable sources.\n"
220
+ "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
221
+ "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
222
+ "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
223
+ "non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
224
+ ),
225
+ offset=2,
226
+ sep_style=SeparatorStyle.SINGLE,
227
+ sep="###",
228
+ )
229
+
230
+ conv_vicuna_v1_1 = Conversation(
231
+ system="A chat between a curious user and an artificial intelligence assistant. "
232
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
233
+ roles=("USER", "ASSISTANT"),
234
+ version="v1",
235
+ messages=(),
236
+ offset=0,
237
+ sep_style=SeparatorStyle.TWO,
238
+ sep=" ",
239
+ sep2="</s>",
240
+ )
241
+
242
+ conv_bair_v1 = Conversation(
243
+ system="BEGINNING OF CONVERSATION:",
244
+ roles=("USER", "GPT"),
245
+ messages=(),
246
+ offset=0,
247
+ sep_style=SeparatorStyle.TWO,
248
+ sep=" ",
249
+ sep2="</s>",
250
+ )
251
+
252
+ simple_conv = Conversation(
253
+ system="You are LLaVA, a large language model trained by UW Madison WAIV Lab, based on LLaMA architecture."
254
+ "You are designed to assist human with a variety of tasks using natural language."
255
+ "Follow the instructions carefully.",
256
+ roles=("Human", "Assistant"),
257
+ messages=(
258
+ ("Human", "Hi!"),
259
+ ("Assistant", "Hi there! How can I help you today?\n")
260
+ ),
261
+ offset=2,
262
+ sep_style=SeparatorStyle.SINGLE,
263
+ sep="###",
264
+ )
265
+
266
+ simple_conv_multimodal = Conversation(
267
+ system="A chat between a curious user and an artificial intelligence assistant. "
268
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
269
+ roles=("Human", "Assistant"),
270
+ messages=(
271
+ ),
272
+ offset=0,
273
+ sep_style=SeparatorStyle.SINGLE,
274
+ sep="###",
275
+ )
276
+
277
+ simple_conv_legacy = Conversation(
278
+ system="You are LLaVA, a large language model trained by UW Madison WAIV Lab."
279
+ "You are designed to assist human with a variety of tasks using natural language."
280
+ "Follow the instructions carefully.",
281
+ roles=("Human", "Assistant"),
282
+ messages=(
283
+ ("Human", "Hi!\n\n### Response:"),
284
+ ("Assistant", "Hi there! How can I help you today?\n")
285
+ ),
286
+ offset=2,
287
+ sep_style=SeparatorStyle.SINGLE,
288
+ sep="###",
289
+ )
290
+
291
+ conv_llava_v1 = Conversation(
292
+ system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
293
+ "You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
294
+ "Follow the instructions carefully and explain your answers in detail.",
295
+ roles=("USER", "ASSISTANT"),
296
+ version="v1",
297
+ messages=(),
298
+ offset=0,
299
+ sep_style=SeparatorStyle.TWO,
300
+ sep=" ",
301
+ sep2="</s>",
302
+ )
303
+
304
+ default_conversation = conv_v1_2
305
+ conv_templates = {
306
+ "default": conv_v1_2,
307
+ "simple": simple_conv,
308
+ "simple_legacy": simple_conv_legacy,
309
+ "multimodal": simple_conv_multimodal,
310
+ "llava_v1": conv_llava_v1,
311
+
312
+ # fastchat
313
+ "v1": conv_v1_2,
314
+ "bair_v1": conv_bair_v1,
315
+ "vicuna_v1_1": conv_vicuna_v1_1,
316
+ }
317
+
318
+
319
+ if __name__ == "__main__":
320
+ print(default_conversation.get_prompt())
omnilmm/model/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .omnilmm import OmniLMMForCausalLM
omnilmm/model/omnilmm.py ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gc
3
+ import math
4
+ import timm
5
+ import torch
6
+ from torch import Tensor
7
+ import torch.nn as nn
8
+ from torch.nn import CrossEntropyLoss
9
+ from typing import List, Optional, Tuple, Union
10
+
11
+ from transformers import AutoConfig, AutoModelForCausalLM
12
+ from transformers import MistralForCausalLM, MistralModel, MistralConfig
13
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
14
+
15
+ from omnilmm.model.utils import build_transform
16
+ from omnilmm.model.resampler import Resampler
17
+
18
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
19
+ DEFAULT_IM_START_TOKEN = "<im_start>"
20
+ DEFAULT_IM_END_TOKEN = "<im_end>"
21
+
22
+
23
+ class OmniLMMConfig(MistralConfig):
24
+ model_type = "omnilmm"
25
+
26
+
27
+ class Identity(torch.nn.Identity):
28
+ def forward(self, input: Tensor, **kwargs) -> Tensor:
29
+ return super().forward(input)
30
+
31
+
32
+ def create_vision_module(config):
33
+ vision_tower = timm.create_model('eva02_enormous_patch14_clip_224.laion2b_plus',
34
+ pretrained=False,
35
+ num_classes=0,
36
+ dynamic_img_size=True,
37
+ dynamic_img_pad=True)
38
+
39
+ if isinstance(vision_tower, timm.models.VisionTransformer):
40
+ if vision_tower.attn_pool is not None:
41
+ vision_tower.attn_pool = Identity()
42
+
43
+ # use 2nd last layer's output
44
+ vision_tower.blocks[-1] = Identity()
45
+
46
+ embed_dim = config.hidden_size
47
+ resampler = Resampler(
48
+ grid_size=int(math.sqrt(config.num_query)),
49
+ embed_dim=embed_dim,
50
+ num_heads=embed_dim // 128,
51
+ kv_dim=vision_tower.embed_dim,
52
+ )
53
+ return vision_tower, resampler
54
+
55
+
56
+ class OmniLMMModel(MistralModel):
57
+ config_class = OmniLMMConfig
58
+
59
+ def __init__(self, config: OmniLMMConfig, mm_vision_tower=None, mm_hidden_size=None, tune_clip=True):
60
+ super(OmniLMMModel, self).__init__(config)
61
+
62
+ if hasattr(config, "mm_vision_tower"):
63
+ vision_tower, resampler = create_vision_module(config)
64
+
65
+ # print(__file__, 'skip loading vision tower weights')
66
+
67
+ # HACK: for FSDP
68
+ self.vision_tower = [vision_tower]
69
+ self.resampler = resampler
70
+ if tune_clip:
71
+ self.vision_tower = self.vision_tower[0]
72
+
73
+ self.vision_config = lambda x: None
74
+
75
+ def initialize_vision_modules(self, vision_tower, no_randaug, num_query, image_size, tune_clip=False):
76
+ self.config.mm_vision_tower = vision_tower
77
+ self.config.use_mm_proj = True
78
+ self.config.num_query = num_query
79
+ self.config.image_size = image_size
80
+
81
+ if not hasattr(self, 'vision_tower'):
82
+ vision_tower, resampler = create_vision_module(self.config)
83
+ state_dict = torch.load(
84
+ '/tt/data/public/multimodal/multimodal_model_ckpts/timm/eva02_enormous_patch14_clip_224.laion2b_plus.pt')
85
+ vision_tower.load_state_dict(state_dict, strict=False)
86
+ del state_dict
87
+ gc.collect()
88
+ else:
89
+ if isinstance(self.vision_tower, list):
90
+ vision_tower = self.vision_tower[0]
91
+ else:
92
+ vision_tower = self.vision_tower
93
+ resampler = self.resampler
94
+ self.vision_tower = vision_tower if tune_clip else [vision_tower]
95
+ self.resampler = resampler
96
+
97
+ train_img_transform = build_transform(
98
+ is_train=True, randaug=not no_randaug, input_size=self.config.image_size, std_mode='OPENAI_CLIP')
99
+ eval_img_transform = build_transform(
100
+ is_train=False, input_size=self.config.image_size, std_mode='OPENAI_CLIP')
101
+
102
+ return dict(
103
+ image_processor=(train_img_transform, eval_img_transform),
104
+ image_token_len=num_query,
105
+ vision_config=self.vision_config
106
+ )
107
+
108
+ def get_vision_embedding(self, pixel_values):
109
+ if isinstance(self.vision_tower, list):
110
+ vision_tower = self.vision_tower[0] # HACK: for FSDP
111
+ else:
112
+ vision_tower = self.vision_tower
113
+
114
+ dtype = vision_tower.pos_embed.data.dtype
115
+ vision_embedding = vision_tower.forward_features(
116
+ pixel_values.type(dtype))
117
+ if hasattr(vision_tower, 'num_prefix_tokens') and vision_tower.num_prefix_tokens > 0:
118
+ vision_embedding = vision_embedding[:,
119
+ vision_tower.num_prefix_tokens:]
120
+ res = self.resampler(vision_embedding)
121
+ return res
122
+
123
+ def get_vllm_embedding(self, data):
124
+
125
+ if 'vision_hidden_states' not in data:
126
+ pixel_values_list = data['pixel_values']
127
+ vision_hidden_states = []
128
+ for pixel_values in pixel_values_list:
129
+ if len(pixel_values) > 0:
130
+ vision_hidden_states.append(self.get_vision_embedding(pixel_values.unsqueeze(0))[0])
131
+ else:
132
+ vision_hidden_states.append([])
133
+ else:
134
+ vision_hidden_states = data['vision_hidden_states']
135
+
136
+ #vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
137
+ inputs_embeds = self.embed_tokens(data['input_ids'])
138
+ vision_hidden_states = [i.type(inputs_embeds.dtype)
139
+ if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
140
+ ]
141
+
142
+
143
+ # HACK: replace back original embeddings for LLaVA pretraining
144
+ orig_embeds_params = getattr(self, 'orig_embeds_params', None)
145
+
146
+ new_input_embeds = []
147
+ cur_image_idx = 0
148
+ for cur_input_ids, cur_input_embeds in zip(data['input_ids'], inputs_embeds):
149
+ if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0:
150
+ # multimodal LLM, but the current sample is not multimodal
151
+ cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
152
+ new_input_embeds.append(cur_input_embeds)
153
+ continue
154
+
155
+ if self.vision_config.use_im_start_end:
156
+ cur_image_features = vision_hidden_states[cur_image_idx]
157
+ num_patches = cur_image_features.shape[0]
158
+ if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum():
159
+ raise ValueError(
160
+ "The number of image start tokens and image end tokens should be the same.")
161
+ image_start_tokens = torch.where(
162
+ cur_input_ids == self.vision_config.im_start_token)[0]
163
+ for image_start_token_pos in image_start_tokens:
164
+ cur_image_features = vision_hidden_states[cur_image_idx].to(
165
+ device=cur_input_embeds.device)
166
+ num_patches = cur_image_features.shape[0]
167
+ if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token:
168
+ raise ValueError(
169
+ "The image end token should follow the image start token.")
170
+ if orig_embeds_params is not None:
171
+ cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features,
172
+ cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
173
+ else:
174
+ cur_new_input_embeds = torch.cat(
175
+ (cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
176
+ cur_image_idx += 1
177
+ new_input_embeds.append(cur_new_input_embeds)
178
+ else:
179
+ raise NotImplementedError
180
+ inputs_embeds = torch.stack(new_input_embeds, dim=0)
181
+
182
+ return inputs_embeds, vision_hidden_states
183
+
184
+ def forward(
185
+ self,
186
+ input_ids: torch.LongTensor = None,
187
+ attention_mask: Optional[torch.Tensor] = None,
188
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
189
+ inputs_embeds: Optional[torch.FloatTensor] = None,
190
+ use_cache: Optional[bool] = None,
191
+ output_attentions: Optional[bool] = None,
192
+ output_hidden_states: Optional[bool] = None,
193
+ images: Optional[torch.FloatTensor] = None,
194
+ return_dict: Optional[bool] = None,
195
+ **kwargs
196
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
197
+
198
+ # HACK: replace back original embeddings for LLaVA pretraining
199
+ orig_embeds_params = getattr(self, 'orig_embeds_params', None)
200
+
201
+ if inputs_embeds is None and past_key_values is None:
202
+ inputs_embeds = self.embed_tokens(input_ids)
203
+
204
+ vision_tower = getattr(self, 'vision_tower', None)
205
+ if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
206
+
207
+ if type(images) is list:
208
+ image_features = []
209
+ for image in images:
210
+ image_forward_out = self.get_vision_embedding(image.unsqueeze(0))[
211
+ 0]
212
+ image_features.append(image_forward_out)
213
+ else:
214
+ image_features = self.get_vision_embedding(images)
215
+
216
+ dummy_image_features = torch.zeros(
217
+ self.config.num_query,
218
+ self.config.hidden_size,
219
+ device=inputs_embeds.device,
220
+ dtype=inputs_embeds.dtype)
221
+
222
+ new_input_embeds = []
223
+ cur_image_idx = 0
224
+ for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
225
+ if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0:
226
+ # multimodal LLM, but the current sample is not multimodal
227
+ cur_input_embeds = cur_input_embeds + \
228
+ (0. * dummy_image_features).sum()
229
+ new_input_embeds.append(cur_input_embeds)
230
+ continue
231
+
232
+ if self.vision_config.use_im_start_end:
233
+ cur_image_features = image_features[cur_image_idx]
234
+ num_patches = cur_image_features.shape[0]
235
+ if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum():
236
+ raise ValueError(
237
+ "The number of image start tokens and image end tokens should be the same.")
238
+ image_start_tokens = torch.where(
239
+ cur_input_ids == self.vision_config.im_start_token)[0]
240
+ for image_start_token_pos in image_start_tokens:
241
+ cur_image_features = image_features[cur_image_idx].to(
242
+ device=cur_input_embeds.device)
243
+ num_patches = cur_image_features.shape[0]
244
+ if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token:
245
+ raise ValueError(
246
+ "The image end token should follow the image start token.")
247
+ if orig_embeds_params is not None:
248
+ cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features,
249
+ cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
250
+ else:
251
+ cur_new_input_embeds = torch.cat(
252
+ (cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
253
+ cur_image_idx += 1
254
+ new_input_embeds.append(cur_new_input_embeds)
255
+ else:
256
+ raise NotImplementedError
257
+ inputs_embeds = torch.stack(new_input_embeds, dim=0)
258
+ input_ids = None
259
+
260
+ return super(OmniLMMModel, self).forward(
261
+ input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values,
262
+ inputs_embeds=inputs_embeds, use_cache=use_cache,
263
+ output_attentions=output_attentions, output_hidden_states=output_hidden_states,
264
+ return_dict=return_dict,
265
+ **kwargs
266
+ )
267
+
268
+
269
+ class OmniLMMForCausalLM(MistralForCausalLM):
270
+ config_class = OmniLMMConfig
271
+
272
+ def __init__(self, config, mm_vision_tower=None, tune_clip=True):
273
+ super(MistralForCausalLM, self).__init__(config)
274
+ self.model = OmniLMMModel(
275
+ config, mm_vision_tower=mm_vision_tower, tune_clip=tune_clip)
276
+
277
+ self.lm_head = nn.Linear(
278
+ config.hidden_size, config.vocab_size, bias=False)
279
+
280
+ # Initialize weights and apply final processing
281
+ self.post_init()
282
+
283
+ def forward(
284
+ self,
285
+ input_ids: torch.LongTensor = None,
286
+ attention_mask: Optional[torch.Tensor] = None,
287
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
288
+ inputs_embeds: Optional[torch.FloatTensor] = None,
289
+ labels: Optional[torch.LongTensor] = None,
290
+ use_cache: Optional[bool] = None,
291
+ output_attentions: Optional[bool] = None,
292
+ output_hidden_states: Optional[bool] = None,
293
+ images: Optional[torch.FloatTensor] = None,
294
+ return_dict: Optional[bool] = None,
295
+ **kwargs
296
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
297
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
298
+ output_hidden_states = (
299
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
300
+ )
301
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
302
+
303
+ # print(f'@@@ At forward, labels: {labels.shape}-{labels}', flush=True)
304
+ # print(f'@@@ At forward, input_ids: {input_ids.shape}-{input_ids}', flush=True)
305
+ # print(f'@@@ At forward, input_ids: {attention_mask.shape}-{attention_mask}', flush=True)
306
+
307
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
308
+ outputs = self.model(
309
+ input_ids=input_ids,
310
+ attention_mask=attention_mask,
311
+ past_key_values=past_key_values,
312
+ inputs_embeds=inputs_embeds,
313
+ use_cache=use_cache,
314
+ output_attentions=output_attentions,
315
+ output_hidden_states=output_hidden_states,
316
+ return_dict=return_dict,
317
+ images=images,
318
+ **kwargs
319
+ )
320
+
321
+ hidden_states = outputs[0]
322
+ logits = self.lm_head(hidden_states)
323
+
324
+ loss = None
325
+ if labels is not None:
326
+ # Shift so that tokens < n predict n
327
+ shift_logits = logits[..., :-1, :].contiguous()
328
+ shift_labels = labels[..., 1:].contiguous()
329
+ # Flatten the tokens
330
+ loss_fct = CrossEntropyLoss()
331
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
332
+ shift_labels = shift_labels.view(-1)
333
+ # Enable model/pipeline parallelism
334
+ shift_labels = shift_labels.to(shift_logits.device)
335
+ loss = loss_fct(shift_logits, shift_labels)
336
+
337
+ if not return_dict:
338
+ output = (logits,) + outputs[1:]
339
+ return (loss,) + output if loss is not None else output
340
+
341
+ return CausalLMOutputWithPast(
342
+ loss=loss,
343
+ logits=logits,
344
+ past_key_values=outputs.past_key_values,
345
+ hidden_states=outputs.hidden_states,
346
+ attentions=outputs.attentions,
347
+ )
348
+
349
+ # TODO could be removed for generate_vllm()
350
+ def prepare_inputs_for_generation(
351
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
352
+ ):
353
+ if past_key_values:
354
+ input_ids = input_ids[:, -1:]
355
+
356
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
357
+ if inputs_embeds is not None and past_key_values is None:
358
+ model_inputs = {"inputs_embeds": inputs_embeds}
359
+ else:
360
+ model_inputs = {"input_ids": input_ids}
361
+
362
+ model_inputs.update(
363
+ {
364
+ "past_key_values": past_key_values,
365
+ "use_cache": kwargs.get("use_cache"),
366
+ "attention_mask": attention_mask,
367
+ "images": kwargs.get("images", None),
368
+ }
369
+ )
370
+ return model_inputs
371
+
372
+ def generate_vllm(
373
+ self,
374
+ input_ids: torch.LongTensor = None,
375
+ images: Optional[torch.FloatTensor] = None,
376
+ vision_hidden_states=None,
377
+ return_vision_hidden_states=False,
378
+ **kwargs
379
+ ):
380
+ model_inputs = {'input_ids': input_ids}
381
+ if vision_hidden_states is None:
382
+ model_inputs['pixel_values'] = images
383
+ else:
384
+ model_inputs['vision_hidden_states'] = vision_hidden_states
385
+
386
+ with torch.inference_mode():
387
+ inputs_embeds, vision_hidden_states = self.model.get_vllm_embedding(model_inputs)
388
+
389
+ result = self.generate(
390
+ inputs_embeds=inputs_embeds,
391
+ **kwargs
392
+ )
393
+
394
+ if return_vision_hidden_states:
395
+ return result, vision_hidden_states
396
+
397
+ return result
398
+
399
+
400
+ def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
401
+ tune_mm_mlp_adapter=False):
402
+ self.model.vision_config.use_im_start_end = mm_use_im_start_end
403
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
404
+ self.resize_token_embeddings(len(tokenizer))
405
+
406
+ if mm_use_im_start_end:
407
+ num_new_tokens = tokenizer.add_tokens(
408
+ [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
409
+ self.resize_token_embeddings(len(tokenizer))
410
+ self.model.vision_config.im_start_token, self.model.vision_config.im_end_token = tokenizer.convert_tokens_to_ids(
411
+ [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
412
+
413
+ if num_new_tokens > 0:
414
+ input_embeddings = self.get_input_embeddings().weight.data
415
+ output_embeddings = self.get_output_embeddings().weight.data
416
+
417
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
418
+ dim=0, keepdim=True)
419
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
420
+ dim=0, keepdim=True)
421
+
422
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
423
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
424
+
425
+ # for new sft data
426
+ num_new_tokens = tokenizer.add_tokens(
427
+ ['<box>', '</box>', '<ref>', '</ref>', '<quad>', '</quad>'], special_tokens=True)
428
+ self.resize_token_embeddings(len(tokenizer))
429
+
430
+ if num_new_tokens > 0:
431
+ input_embeddings = self.get_input_embeddings().weight.data
432
+ output_embeddings = self.get_output_embeddings().weight.data
433
+
434
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
435
+ dim=0, keepdim=True)
436
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
437
+ dim=0, keepdim=True)
438
+
439
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
440
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
441
+
442
+ if tune_mm_mlp_adapter:
443
+ self.model.orig_embeds_params = [
444
+ self.get_input_embeddings().weight.data.clone().to(device=device)]
445
+ for p in self.get_input_embeddings().parameters():
446
+ p.requires_grad = True
447
+ for p in self.get_output_embeddings().parameters():
448
+ p.requires_grad = False
449
+
450
+ self.model.vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
451
+ [DEFAULT_IMAGE_PATCH_TOKEN])[0]
452
+ print(f'Tokenizer: {tokenizer}\n patch_token_id: {self.model.vision_config.im_patch_token}, visoin_config: {self.model.vision_config}', flush=True)
453
+ # exit()
454
+
455
+
456
+ AutoConfig.register("omnilmm", OmniLMMConfig)
457
+ AutoModelForCausalLM.register(OmniLMMConfig, OmniLMMForCausalLM)
omnilmm/model/resampler.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from collections import OrderedDict
7
+ import math
8
+ import requests
9
+ from io import BytesIO
10
+ from functools import partial
11
+ from PIL import Image
12
+ from typing import Callable, Optional, Sequence, Tuple, List, Union
13
+ import numpy as np
14
+
15
+ import torch
16
+ from torch import nn
17
+ from torch.nn import functional as F
18
+ from torch.nn.init import trunc_normal_
19
+ from torchvision import transforms
20
+ from torchvision.transforms import InterpolationMode
21
+
22
+
23
+ def get_abs_pos(abs_pos, tgt_size):
24
+ # abs_pos: L, C
25
+ # tgt_size: M
26
+ # return: M, C
27
+ src_size = int(math.sqrt(abs_pos.size(0)))
28
+ tgt_size = int(math.sqrt(tgt_size))
29
+ dtype = abs_pos.dtype
30
+
31
+ if src_size != tgt_size:
32
+ return F.interpolate(
33
+ abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
34
+ size=(tgt_size, tgt_size),
35
+ mode="bicubic",
36
+ align_corners=False,
37
+ ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
38
+ else:
39
+ return abs_pos
40
+
41
+
42
+ # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
43
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
44
+ """
45
+ grid_size: int of the grid height and width
46
+ return:
47
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
48
+ """
49
+ grid_h = np.arange(grid_size, dtype=np.float32)
50
+ grid_w = np.arange(grid_size, dtype=np.float32)
51
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
52
+ grid = np.stack(grid, axis=0)
53
+
54
+ grid = grid.reshape([2, 1, grid_size, grid_size])
55
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
56
+ if cls_token:
57
+ pos_embed = np.concatenate(
58
+ [np.zeros([1, embed_dim]), pos_embed], axis=0)
59
+ return pos_embed
60
+
61
+
62
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
63
+ assert embed_dim % 2 == 0
64
+
65
+ # use half of dimensions to encode grid_h
66
+ emb_h = get_1d_sincos_pos_embed_from_grid(
67
+ embed_dim // 2, grid[0]) # (H*W, D/2)
68
+ emb_w = get_1d_sincos_pos_embed_from_grid(
69
+ embed_dim // 2, grid[1]) # (H*W, D/2)
70
+
71
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
72
+ return emb
73
+
74
+
75
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
76
+ """
77
+ embed_dim: output dimension for each position
78
+ pos: a list of positions to be encoded: size (M,)
79
+ out: (M, D)
80
+ """
81
+ assert embed_dim % 2 == 0
82
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
83
+ omega /= embed_dim / 2.
84
+ omega = 1. / 10000 ** omega # (D/2,)
85
+
86
+ pos = pos.reshape(-1) # (M,)
87
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
88
+
89
+ emb_sin = np.sin(out) # (M, D/2)
90
+ emb_cos = np.cos(out) # (M, D/2)
91
+
92
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
93
+ return emb
94
+
95
+
96
+ class Resampler(nn.Module):
97
+ """
98
+ A 2D perceiver-resampler network with one cross attention layers by
99
+ (grid_size**2) learnable queries and 2d sincos pos_emb
100
+ Outputs:
101
+ A tensor with the shape of (grid_size**2, embed_dim)
102
+ """
103
+
104
+ def __init__(
105
+ self,
106
+ grid_size,
107
+ embed_dim,
108
+ num_heads,
109
+ kv_dim=None,
110
+ norm_layer=partial(nn.LayerNorm, eps=1e-6)
111
+ ):
112
+ super().__init__()
113
+ self.num_queries = grid_size ** 2
114
+ self.embed_dim = embed_dim
115
+ self.num_heads = num_heads
116
+
117
+ self.pos_embed = nn.Parameter(
118
+ torch.from_numpy(get_2d_sincos_pos_embed(
119
+ embed_dim, grid_size)).float()
120
+ ).requires_grad_(False)
121
+
122
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
123
+ trunc_normal_(self.query, std=.02)
124
+
125
+ if kv_dim is not None and kv_dim != embed_dim:
126
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
127
+ else:
128
+ self.kv_proj = nn.Identity()
129
+
130
+ self.attn = nn.MultiheadAttention(embed_dim, num_heads)
131
+ self.ln_q = norm_layer(embed_dim)
132
+ self.ln_kv = norm_layer(embed_dim)
133
+
134
+ self.ln_post = norm_layer(embed_dim)
135
+ self.proj = nn.Parameter(
136
+ (embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
137
+
138
+ self.apply(self._init_weights)
139
+
140
+ def _init_weights(self, m):
141
+ if isinstance(m, nn.Linear):
142
+ trunc_normal_(m.weight, std=.02)
143
+ if isinstance(m, nn.Linear) and m.bias is not None:
144
+ nn.init.constant_(m.bias, 0)
145
+ elif isinstance(m, nn.LayerNorm):
146
+ nn.init.constant_(m.bias, 0)
147
+ nn.init.constant_(m.weight, 1.0)
148
+
149
+ def forward(self, x, attn_mask=None):
150
+
151
+ pos_embed = get_abs_pos(self.pos_embed, x.size(1))
152
+
153
+ x = self.kv_proj(x)
154
+ x = self.ln_kv(x).permute(1, 0, 2)
155
+
156
+ N = x.shape[1]
157
+ q = self.ln_q(self.query)
158
+ # print((self._repeat(q, N) + self.pos_embed.unsqueeze(1)).dtype, (x + pos_embed.unsqueeze(1)).dtype, x.dtype)
159
+ out = self.attn(
160
+ self._repeat(q, N) + self.pos_embed.unsqueeze(1),
161
+ x + pos_embed.unsqueeze(1),
162
+ x,
163
+ attn_mask=attn_mask)[0]
164
+ x = out.permute(1, 0, 2)
165
+
166
+ x = self.ln_post(x)
167
+ x = x @ self.proj
168
+ return x
169
+
170
+ def _repeat(self, query, N: int):
171
+ return query.unsqueeze(1).repeat(1, N, 1)
omnilmm/model/utils.py ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torchvision import transforms
2
+ from timm.data.transforms import RandomResizedCropAndInterpolation
3
+ from timm.data.constants import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
4
+ from transformers import AutoConfig
5
+ from PIL import Image
6
+ from io import BytesIO
7
+ import torch.distributed as dist
8
+ import numpy as np
9
+ import pickle
10
+ import base64
11
+ import cv2
12
+ import os
13
+ import torch
14
+ from transformers import AutoConfig, StoppingCriteria
15
+
16
+ try:
17
+ from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
18
+ except ImportError:
19
+ OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073)
20
+ OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
21
+
22
+
23
+ def auto_upgrade(config):
24
+ cfg = AutoConfig.from_pretrained(config)
25
+ if 'llava' in config and cfg.model_type != 'llava':
26
+ print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
27
+ print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
28
+ confirm = input(
29
+ "Please confirm that you want to upgrade the checkpoint. [Y/N]")
30
+ if confirm.lower() in ["y", "yes"]:
31
+ print("Upgrading checkpoint...")
32
+ assert len(cfg.architectures) == 1
33
+ setattr(cfg.__class__, "model_type", "llava")
34
+ cfg.architectures[0] = 'LlavaLlamaForCausalLM'
35
+ cfg.save_pretrained(config)
36
+ print("Checkpoint upgraded.")
37
+ else:
38
+ print("Checkpoint upgrade aborted.")
39
+ exit(1)
40
+
41
+
42
+ class KeywordsStoppingCriteria(StoppingCriteria):
43
+ def __init__(self, keywords, tokenizer, input_ids):
44
+ self.keywords = keywords
45
+ self.tokenizer = tokenizer
46
+ self.start_len = None
47
+ self.input_ids = input_ids
48
+
49
+ def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
50
+ if self.start_len is None:
51
+ self.start_len = self.input_ids.shape[1]
52
+ else:
53
+ outputs = self.tokenizer.batch_decode(
54
+ output_ids[:, self.start_len:], skip_special_tokens=True)[0]
55
+ for keyword in self.keywords:
56
+ if keyword in outputs:
57
+ return True
58
+ return False
59
+
60
+
61
+ def auto_upgrade(config):
62
+ cfg = AutoConfig.from_pretrained(config)
63
+ if 'llava' in config and cfg.model_type != 'llava':
64
+ print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
65
+ print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
66
+ confirm = input(
67
+ "Please confirm that you want to upgrade the checkpoint. [Y/N]")
68
+ if confirm.lower() in ["y", "yes"]:
69
+ print("Upgrading checkpoint...")
70
+ assert len(cfg.architectures) == 1
71
+ setattr(cfg.__class__, "model_type", "llava")
72
+ cfg.architectures[0] = 'LlavaLlamaForCausalLM'
73
+ cfg.save_pretrained(config)
74
+ print("Checkpoint upgraded.")
75
+ else:
76
+ print("Checkpoint upgrade aborted.")
77
+ exit(1)
78
+
79
+ # aug functions
80
+
81
+
82
+ def identity_func(img):
83
+ return img
84
+
85
+
86
+ def autocontrast_func(img, cutoff=0):
87
+ '''
88
+ same output as PIL.ImageOps.autocontrast
89
+ '''
90
+ n_bins = 256
91
+
92
+ def tune_channel(ch):
93
+ n = ch.size
94
+ cut = cutoff * n // 100
95
+ if cut == 0:
96
+ high, low = ch.max(), ch.min()
97
+ else:
98
+ hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
99
+ low = np.argwhere(np.cumsum(hist) > cut)
100
+ low = 0 if low.shape[0] == 0 else low[0]
101
+ high = np.argwhere(np.cumsum(hist[::-1]) > cut)
102
+ high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
103
+ if high <= low:
104
+ table = np.arange(n_bins)
105
+ else:
106
+ scale = (n_bins - 1) / (high - low)
107
+ table = np.arange(n_bins) * scale - low * scale
108
+ table[table < 0] = 0
109
+ table[table > n_bins - 1] = n_bins - 1
110
+ table = table.clip(0, 255).astype(np.uint8)
111
+ return table[ch]
112
+
113
+ channels = [tune_channel(ch) for ch in cv2.split(img)]
114
+ out = cv2.merge(channels)
115
+ return out
116
+
117
+
118
+ def equalize_func(img):
119
+ '''
120
+ same output as PIL.ImageOps.equalize
121
+ PIL's implementation is different from cv2.equalize
122
+ '''
123
+ n_bins = 256
124
+
125
+ def tune_channel(ch):
126
+ hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
127
+ non_zero_hist = hist[hist != 0].reshape(-1)
128
+ step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
129
+ if step == 0:
130
+ return ch
131
+ n = np.empty_like(hist)
132
+ n[0] = step // 2
133
+ n[1:] = hist[:-1]
134
+ table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
135
+ return table[ch]
136
+
137
+ channels = [tune_channel(ch) for ch in cv2.split(img)]
138
+ out = cv2.merge(channels)
139
+ return out
140
+
141
+
142
+ def rotate_func(img, degree, fill=(0, 0, 0)):
143
+ '''
144
+ like PIL, rotate by degree, not radians
145
+ '''
146
+ H, W = img.shape[0], img.shape[1]
147
+ center = W / 2, H / 2
148
+ M = cv2.getRotationMatrix2D(center, degree, 1)
149
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
150
+ return out
151
+
152
+
153
+ def solarize_func(img, thresh=128):
154
+ '''
155
+ same output as PIL.ImageOps.posterize
156
+ '''
157
+ table = np.array([el if el < thresh else 255 - el for el in range(256)])
158
+ table = table.clip(0, 255).astype(np.uint8)
159
+ out = table[img]
160
+ return out
161
+
162
+
163
+ def color_func(img, factor):
164
+ '''
165
+ same output as PIL.ImageEnhance.Color
166
+ '''
167
+ # implementation according to PIL definition, quite slow
168
+ # degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
169
+ # out = blend(degenerate, img, factor)
170
+ # M = (
171
+ # np.eye(3) * factor
172
+ # + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
173
+ # )[np.newaxis, np.newaxis, :]
174
+ M = (
175
+ np.float32([
176
+ [0.886, -0.114, -0.114],
177
+ [-0.587, 0.413, -0.587],
178
+ [-0.299, -0.299, 0.701]]) * factor
179
+ + np.float32([[0.114], [0.587], [0.299]])
180
+ )
181
+ out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
182
+ return out
183
+
184
+
185
+ def contrast_func(img, factor):
186
+ """
187
+ same output as PIL.ImageEnhance.Contrast
188
+ """
189
+ mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
190
+ table = np.array([(
191
+ el - mean) * factor + mean
192
+ for el in range(256)
193
+ ]).clip(0, 255).astype(np.uint8)
194
+ out = table[img]
195
+ return out
196
+
197
+
198
+ def brightness_func(img, factor):
199
+ '''
200
+ same output as PIL.ImageEnhance.Contrast
201
+ '''
202
+ table = (np.arange(256, dtype=np.float32) *
203
+ factor).clip(0, 255).astype(np.uint8)
204
+ out = table[img]
205
+ return out
206
+
207
+
208
+ def sharpness_func(img, factor):
209
+ '''
210
+ The differences the this result and PIL are all on the 4 boundaries, the center
211
+ areas are same
212
+ '''
213
+ kernel = np.ones((3, 3), dtype=np.float32)
214
+ kernel[1][1] = 5
215
+ kernel /= 13
216
+ degenerate = cv2.filter2D(img, -1, kernel)
217
+ if factor == 0.0:
218
+ out = degenerate
219
+ elif factor == 1.0:
220
+ out = img
221
+ else:
222
+ out = img.astype(np.float32)
223
+ degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
224
+ out[1:-1, 1:-1, :] = degenerate + factor * \
225
+ (out[1:-1, 1:-1, :] - degenerate)
226
+ out = out.astype(np.uint8)
227
+ return out
228
+
229
+
230
+ def shear_x_func(img, factor, fill=(0, 0, 0)):
231
+ H, W = img.shape[0], img.shape[1]
232
+ M = np.float32([[1, factor, 0], [0, 1, 0]])
233
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill,
234
+ flags=cv2.INTER_LINEAR).astype(np.uint8)
235
+ return out
236
+
237
+
238
+ def translate_x_func(img, offset, fill=(0, 0, 0)):
239
+ '''
240
+ same output as PIL.Image.transform
241
+ '''
242
+ H, W = img.shape[0], img.shape[1]
243
+ M = np.float32([[1, 0, -offset], [0, 1, 0]])
244
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill,
245
+ flags=cv2.INTER_LINEAR).astype(np.uint8)
246
+ return out
247
+
248
+
249
+ def translate_y_func(img, offset, fill=(0, 0, 0)):
250
+ '''
251
+ same output as PIL.Image.transform
252
+ '''
253
+ H, W = img.shape[0], img.shape[1]
254
+ M = np.float32([[1, 0, 0], [0, 1, -offset]])
255
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill,
256
+ flags=cv2.INTER_LINEAR).astype(np.uint8)
257
+ return out
258
+
259
+
260
+ def posterize_func(img, bits):
261
+ '''
262
+ same output as PIL.ImageOps.posterize
263
+ '''
264
+ out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
265
+ return out
266
+
267
+
268
+ def shear_y_func(img, factor, fill=(0, 0, 0)):
269
+ H, W = img.shape[0], img.shape[1]
270
+ M = np.float32([[1, 0, 0], [factor, 1, 0]])
271
+ out = cv2.warpAffine(img, M, (W, H), borderValue=fill,
272
+ flags=cv2.INTER_LINEAR).astype(np.uint8)
273
+ return out
274
+
275
+
276
+ def cutout_func(img, pad_size, replace=(0, 0, 0)):
277
+ replace = np.array(replace, dtype=np.uint8)
278
+ H, W = img.shape[0], img.shape[1]
279
+ rh, rw = np.random.random(2)
280
+ pad_size = pad_size // 2
281
+ ch, cw = int(rh * H), int(rw * W)
282
+ x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
283
+ y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
284
+ out = img.copy()
285
+ out[x1:x2, y1:y2, :] = replace
286
+ return out
287
+
288
+
289
+ # level to args
290
+ def enhance_level_to_args(MAX_LEVEL):
291
+ def level_to_args(level):
292
+ return ((level / MAX_LEVEL) * 1.8 + 0.1,)
293
+ return level_to_args
294
+
295
+
296
+ def shear_level_to_args(MAX_LEVEL, replace_value):
297
+ def level_to_args(level):
298
+ level = (level / MAX_LEVEL) * 0.3
299
+ if np.random.random() > 0.5:
300
+ level = -level
301
+ return (level, replace_value)
302
+
303
+ return level_to_args
304
+
305
+
306
+ def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
307
+ def level_to_args(level):
308
+ level = (level / MAX_LEVEL) * float(translate_const)
309
+ if np.random.random() > 0.5:
310
+ level = -level
311
+ return (level, replace_value)
312
+
313
+ return level_to_args
314
+
315
+
316
+ def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
317
+ def level_to_args(level):
318
+ level = int((level / MAX_LEVEL) * cutout_const)
319
+ return (level, replace_value)
320
+
321
+ return level_to_args
322
+
323
+
324
+ def solarize_level_to_args(MAX_LEVEL):
325
+ def level_to_args(level):
326
+ level = int((level / MAX_LEVEL) * 256)
327
+ return (level, )
328
+ return level_to_args
329
+
330
+
331
+ def none_level_to_args(level):
332
+ return ()
333
+
334
+
335
+ def posterize_level_to_args(MAX_LEVEL):
336
+ def level_to_args(level):
337
+ level = int((level / MAX_LEVEL) * 4)
338
+ return (level, )
339
+ return level_to_args
340
+
341
+
342
+ def rotate_level_to_args(MAX_LEVEL, replace_value):
343
+ def level_to_args(level):
344
+ level = (level / MAX_LEVEL) * 30
345
+ if np.random.random() < 0.5:
346
+ level = -level
347
+ return (level, replace_value)
348
+
349
+ return level_to_args
350
+
351
+
352
+ func_dict = {
353
+ 'Identity': identity_func,
354
+ 'AutoContrast': autocontrast_func,
355
+ 'Equalize': equalize_func,
356
+ 'Rotate': rotate_func,
357
+ 'Solarize': solarize_func,
358
+ 'Color': color_func,
359
+ 'Contrast': contrast_func,
360
+ 'Brightness': brightness_func,
361
+ 'Sharpness': sharpness_func,
362
+ 'ShearX': shear_x_func,
363
+ 'TranslateX': translate_x_func,
364
+ 'TranslateY': translate_y_func,
365
+ 'Posterize': posterize_func,
366
+ 'ShearY': shear_y_func,
367
+ }
368
+
369
+ translate_const = 10
370
+ MAX_LEVEL = 10
371
+ replace_value = (128, 128, 128)
372
+ arg_dict = {
373
+ 'Identity': none_level_to_args,
374
+ 'AutoContrast': none_level_to_args,
375
+ 'Equalize': none_level_to_args,
376
+ 'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value),
377
+ 'Solarize': solarize_level_to_args(MAX_LEVEL),
378
+ 'Color': enhance_level_to_args(MAX_LEVEL),
379
+ 'Contrast': enhance_level_to_args(MAX_LEVEL),
380
+ 'Brightness': enhance_level_to_args(MAX_LEVEL),
381
+ 'Sharpness': enhance_level_to_args(MAX_LEVEL),
382
+ 'ShearX': shear_level_to_args(MAX_LEVEL, replace_value),
383
+ 'TranslateX': translate_level_to_args(
384
+ translate_const, MAX_LEVEL, replace_value
385
+ ),
386
+ 'TranslateY': translate_level_to_args(
387
+ translate_const, MAX_LEVEL, replace_value
388
+ ),
389
+ 'Posterize': posterize_level_to_args(MAX_LEVEL),
390
+ 'ShearY': shear_level_to_args(MAX_LEVEL, replace_value),
391
+ }
392
+
393
+
394
+ class RandomAugment(object):
395
+
396
+ def __init__(self, N=2, M=10, isPIL=False, augs=[]):
397
+ self.N = N
398
+ self.M = M
399
+ self.isPIL = isPIL
400
+ if augs:
401
+ self.augs = augs
402
+ else:
403
+ self.augs = list(arg_dict.keys())
404
+
405
+ def get_random_ops(self):
406
+ sampled_ops = np.random.choice(self.augs, self.N)
407
+ return [(op, 0.5, self.M) for op in sampled_ops]
408
+
409
+ def __call__(self, img):
410
+ if self.isPIL:
411
+ img = np.array(img)
412
+ ops = self.get_random_ops()
413
+ for name, prob, level in ops:
414
+ if np.random.random() > prob:
415
+ continue
416
+ args = arg_dict[name](level)
417
+ img = func_dict[name](img, *args)
418
+ return img
419
+
420
+
421
+ def build_transform(is_train, randaug=True, input_size=224, interpolation='bicubic', std_mode='IMAGENET_INCEPTION'):
422
+ if std_mode == 'IMAGENET_INCEPTION':
423
+ mean = IMAGENET_INCEPTION_MEAN
424
+ std = IMAGENET_INCEPTION_STD
425
+ elif std_mode == 'OPENAI_CLIP':
426
+ mean = OPENAI_CLIP_MEAN
427
+ std = OPENAI_CLIP_STD
428
+ else:
429
+ raise NotImplementedError
430
+
431
+ if is_train:
432
+ crop_scale = float(os.environ.get('TRAIN_CROP_SCALE', 0.9999))
433
+ t = [
434
+ RandomResizedCropAndInterpolation(
435
+ input_size, scale=(crop_scale, 1.0), interpolation='bicubic'),
436
+ # transforms.RandomHorizontalFlip(),
437
+ ]
438
+ if randaug and os.environ.get('TRAIN_DO_AUG', 'False') == 'True':
439
+ print(f'@@@@@ Do random aug during training', flush=True)
440
+ t.append(
441
+ RandomAugment(
442
+ 2, 7, isPIL=True,
443
+ augs=[
444
+ 'Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
445
+ 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate',
446
+ ]))
447
+ else:
448
+ print(f'@@@@@ Skip random aug during training', flush=True)
449
+ t += [
450
+ transforms.ToTensor(),
451
+ transforms.Normalize(mean=mean, std=std),
452
+ ]
453
+ t = transforms.Compose(t)
454
+ else:
455
+ t = transforms.Compose([
456
+ transforms.Resize((input_size, input_size),
457
+ interpolation=transforms.InterpolationMode.BICUBIC),
458
+ transforms.ToTensor(),
459
+ transforms.Normalize(mean=mean, std=std)
460
+ ])
461
+
462
+ return t
463
+
464
+
465
+ def img2b64(img_path):
466
+ img = Image.open(img_path) # path to file
467
+ img_buffer = BytesIO()
468
+ img.save(img_buffer, format=img.format)
469
+ byte_data = img_buffer.getvalue()
470
+ base64_str = base64.b64encode(byte_data) # bytes
471
+ base64_str = base64_str.decode("utf-8") # str
472
+ return base64_str
473
+
474
+
475
+ def str2b64(str):
476
+ return base64.b64encode(str.encode('utf-8')).decode('utf-8')
477
+
478
+
479
+ def b642str(b64):
480
+ return base64.b64decode(b64).decode('utf-8')
481
+
482
+
483
+ def is_dist_avail_and_initialized():
484
+ if not dist.is_available():
485
+ return False
486
+ if not dist.is_initialized():
487
+ return False
488
+ return True
489
+
490
+
491
+ def get_world_size():
492
+ if not is_dist_avail_and_initialized():
493
+ return 1
494
+ return dist.get_world_size()
495
+
496
+
497
+ def get_rank():
498
+ if not is_dist_avail_and_initialized():
499
+ return 0
500
+ return dist.get_rank()
501
+
502
+
503
+ def all_gather(data):
504
+ """
505
+ Run all_gather on arbitrary picklable data (not necessarily tensors)
506
+ Args:
507
+ data: any picklable object
508
+ Returns:
509
+ list[data]: list of data gathered from each rank
510
+ """
511
+ world_size = get_world_size()
512
+ if world_size == 1:
513
+ return [data]
514
+
515
+ # serialized to a Tensor
516
+ buffer = pickle.dumps(data)
517
+ storage = torch.ByteStorage.from_buffer(buffer)
518
+ tensor = torch.ByteTensor(storage).to("cuda")
519
+
520
+ # obtain Tensor size of each rank
521
+ local_size = torch.LongTensor([tensor.numel()]).to("cuda")
522
+ size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)]
523
+ dist.all_gather(size_list, local_size)
524
+ size_list = [int(size.item()) for size in size_list]
525
+ max_size = max(size_list)
526
+
527
+ # receiving Tensor from all ranks
528
+ # we pad the tensor because torch all_gather does not support
529
+ # gathering tensors of different shapes
530
+ tensor_list = []
531
+ for _ in size_list:
532
+ tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda"))
533
+ if local_size != max_size:
534
+ padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda")
535
+ tensor = torch.cat((tensor, padding), dim=0)
536
+ dist.all_gather(tensor_list, tensor)
537
+
538
+ data_list = []
539
+ for size, tensor in zip(size_list, tensor_list):
540
+ buffer = tensor.cpu().numpy().tobytes()[:size]
541
+ data_list.append(pickle.loads(buffer))
542
+
543
+ return data_list
544
+
545
+
546
+ def mean(lst):
547
+ return sum(lst) / len(lst)
548
+
549
+
550
+ def stop_gradient_by_name(name: str):
551
+ def apply_fn(module):
552
+ if hasattr(module, name):
553
+ getattr(module, name).requires_grad_(False)
554
+
555
+ return apply_fn
omnilmm/train/train_utils.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gc
3
+ import copy
4
+ import time
5
+
6
+ import torch
7
+ import warnings
8
+ import transformers
9
+
10
+ import numpy as np
11
+
12
+ from typing import Dict, Optional, Sequence
13
+ from omnilmm import conversation as conversation_lib
14
+
15
+ IGNORE_INDEX = -100
16
+ DEFAULT_IMAGE_TOKEN = "<image>"
17
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
18
+ DEFAULT_IM_START_TOKEN = "<im_start>"
19
+ DEFAULT_IM_END_TOKEN = "<im_end>"
20
+
21
+
22
+ def _tokenize_fn(strings: Sequence[str],
23
+ tokenizer: transformers.PreTrainedTokenizer) -> Dict:
24
+ """Tokenize a list of strings."""
25
+ tokenized_list = [
26
+ tokenizer(
27
+ text,
28
+ return_tensors="pt",
29
+ padding="longest",
30
+ max_length=tokenizer.model_max_length,
31
+ truncation=True,
32
+ ) for text in strings
33
+ ]
34
+ input_ids = labels = [
35
+ tokenized.input_ids[0] for tokenized in tokenized_list
36
+ ]
37
+ input_ids_lens = labels_lens = [
38
+ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
39
+ for tokenized in tokenized_list
40
+ ]
41
+ return dict(
42
+ input_ids=input_ids,
43
+ labels=labels,
44
+ input_ids_lens=input_ids_lens,
45
+ labels_lens=labels_lens,
46
+ )
47
+
48
+
49
+
50
+ def omni_preprocess(sources,
51
+ tokenizer: transformers.PreTrainedTokenizer,
52
+ generation=False):
53
+ system_content = 'You are an artificial intelligence assistant, which gives helpful, detailed, and polite answers to the human\'s questions.'
54
+ ignore_index = -100
55
+
56
+ response_template = '\n<|assistant|>\n'
57
+ instruction_template = '\n<|user|>\n'
58
+ response_token_ids = tokenizer.encode(
59
+ response_template, add_special_tokens=False)
60
+ instruction_token_ids = tokenizer.encode(
61
+ instruction_template, add_special_tokens=False)
62
+
63
+ batch_input_ids = []
64
+ batch_labels = []
65
+ for i in range(len(sources)):
66
+ new_source = []
67
+ prev_role = 'unexpect'
68
+ for conv_turn in sources[i]:
69
+ role = conv_turn['from'] if 'from' in conv_turn else conv_turn['role']
70
+ content = conv_turn['value'] if 'value' in conv_turn else conv_turn['content']
71
+
72
+ role = 'user' if role == 'human' else role
73
+ role = 'assistant' if role == 'gpt' else role
74
+
75
+ assert role in ['user', 'assistant']
76
+ assert role != prev_role, f'role={role}, prev_role={prev_role}'
77
+ prev_role = role
78
+
79
+ new_turn = {
80
+ 'role': role,
81
+ 'content': content
82
+ }
83
+ new_source.append(new_turn)
84
+ if new_source[0]['role'] != 'system':
85
+ new_source.insert(0, {'role': 'system', 'content': system_content})
86
+
87
+ # TODO: this automatically add '\n' to the end
88
+ res_text = tokenizer.apply_chat_template(
89
+ new_source, tokenize=False, add_generation_prompt=generation)
90
+ if not generation:
91
+ res_text = res_text.strip()
92
+
93
+ conversations_tokenized = _tokenize_fn([res_text], tokenizer)
94
+ res_input_ids = conversations_tokenized["input_ids"][0]
95
+
96
+ # since labels and input_ids are reference towards the same object
97
+ res_labels = copy.deepcopy(conversations_tokenized["labels"][0])
98
+
99
+ response_token_ids_idxs = []
100
+ human_token_ids_idxs = []
101
+
102
+ for assistant_idx in np.where(res_labels == response_token_ids[0])[0]:
103
+ # find the indexes of the start of a response.
104
+ if (response_token_ids == res_labels[assistant_idx: assistant_idx + len(
105
+ response_token_ids)].tolist()
106
+ ):
107
+ response_token_ids_idxs.append(
108
+ assistant_idx + len(response_token_ids))
109
+
110
+ if len(response_token_ids_idxs) == 0:
111
+ warnings.warn(
112
+ f"Could not find response key `{response_template}` in the "
113
+ f'following instance: @===>{tokenizer.decode(res_input_ids)}<===@ '
114
+ f'Raw text is @===>{res_text}<===@'
115
+ f'Raw source is @===>{new_source}<===@'
116
+ f"This instance will be ignored in loss calculation. "
117
+ f"Note, if this happens often, consider increasing the `max_seq_length`."
118
+ )
119
+ res_labels[:] = ignore_index
120
+
121
+ human_token_ids = instruction_token_ids
122
+ for human_idx in np.where(res_labels == human_token_ids[0])[0]:
123
+ # find the indexes of the start of a human answer.
124
+ if human_token_ids == res_labels[human_idx: human_idx + len(human_token_ids)].tolist():
125
+ human_token_ids_idxs.append(human_idx)
126
+
127
+ if len(human_token_ids_idxs) == 0:
128
+ warnings.warn(
129
+ f"Could not find instruction key `{instruction_template}` in the "
130
+ f'following instance: @===>{tokenizer.decode(res_input_ids)}<===@ '
131
+ f'Raw text is @===>{res_text}<===@'
132
+ f'Raw source is @===>{new_source}<===@'
133
+ f"This instance will be ignored in loss calculation. "
134
+ f"Note, if this happens often, consider increasing the `max_seq_length`."
135
+ )
136
+ res_labels[:] = ignore_index
137
+
138
+ for idx, (start, end) in enumerate(zip(human_token_ids_idxs, response_token_ids_idxs)):
139
+ # Make pytorch loss function ignore all non response tokens
140
+ if idx != 0:
141
+ res_labels[start:end] = ignore_index
142
+ else:
143
+ res_labels[:end] = ignore_index
144
+
145
+ if len(response_token_ids_idxs) < len(human_token_ids_idxs):
146
+ res_labels[human_token_ids_idxs[-1]:] = ignore_index
147
+
148
+ batch_input_ids.append(res_input_ids)
149
+ batch_labels.append(res_labels)
150
+
151
+ return dict(input_ids=batch_input_ids, labels=batch_labels)
152
+
153
+
omnilmm/utils.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import logging
3
+ import logging.handlers
4
+ import os
5
+ import sys
6
+
7
+ import requests
8
+
9
+ from omnilmm.constants import LOGDIR
10
+
11
+ server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
12
+ moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
13
+
14
+ handler = None
15
+
16
+
17
+ def build_logger(logger_name, logger_filename):
18
+ global handler
19
+
20
+ formatter = logging.Formatter(
21
+ fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
22
+ datefmt="%Y-%m-%d %H:%M:%S",
23
+ )
24
+
25
+ # Set the format of root handlers
26
+ if not logging.getLogger().handlers:
27
+ logging.basicConfig(level=logging.INFO)
28
+ logging.getLogger().handlers[0].setFormatter(formatter)
29
+
30
+ # Redirect stdout and stderr to loggers
31
+ stdout_logger = logging.getLogger("stdout")
32
+ stdout_logger.setLevel(logging.INFO)
33
+ sl = StreamToLogger(stdout_logger, logging.INFO)
34
+ sys.stdout = sl
35
+
36
+ stderr_logger = logging.getLogger("stderr")
37
+ stderr_logger.setLevel(logging.ERROR)
38
+ sl = StreamToLogger(stderr_logger, logging.ERROR)
39
+ sys.stderr = sl
40
+
41
+ # Get logger
42
+ logger = logging.getLogger(logger_name)
43
+ logger.setLevel(logging.INFO)
44
+
45
+ # Add a file handler for all loggers
46
+ if handler is None:
47
+ os.makedirs(LOGDIR, exist_ok=True)
48
+ filename = os.path.join(LOGDIR, logger_filename)
49
+ handler = logging.handlers.TimedRotatingFileHandler(
50
+ filename, when='D', utc=True)
51
+ handler.setFormatter(formatter)
52
+
53
+ for name, item in logging.root.manager.loggerDict.items():
54
+ if isinstance(item, logging.Logger):
55
+ item.addHandler(handler)
56
+
57
+ return logger
58
+
59
+
60
+ class StreamToLogger(object):
61
+ """
62
+ Fake file-like stream object that redirects writes to a logger instance.
63
+ """
64
+
65
+ def __init__(self, logger, log_level=logging.INFO):
66
+ self.terminal = sys.stdout
67
+ self.logger = logger
68
+ self.log_level = log_level
69
+ self.linebuf = ''
70
+
71
+ def __getattr__(self, attr):
72
+ return getattr(self.terminal, attr)
73
+
74
+ def write(self, buf):
75
+ temp_linebuf = self.linebuf + buf
76
+ self.linebuf = ''
77
+ for line in temp_linebuf.splitlines(True):
78
+ # From the io.TextIOWrapper docs:
79
+ # On output, if newline is None, any '\n' characters written
80
+ # are translated to the system default line separator.
81
+ # By default sys.stdout.write() expects '\n' newlines and then
82
+ # translates them so this is still cross platform.
83
+ if line[-1] == '\n':
84
+ self.logger.log(self.log_level, line.rstrip())
85
+ else:
86
+ self.linebuf += line
87
+
88
+ def flush(self):
89
+ if self.linebuf != '':
90
+ self.logger.log(self.log_level, self.linebuf.rstrip())
91
+ self.linebuf = ''
92
+
93
+
94
+ def disable_torch_init():
95
+ """
96
+ Disable the redundant torch default initialization to accelerate model creation.
97
+ """
98
+ import torch
99
+ setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
100
+ setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
101
+
102
+
103
+ def violates_moderation(text):
104
+ """
105
+ Check whether the text violates OpenAI moderation API.
106
+ """
107
+ url = "https://api.openai.com/v1/moderations"
108
+ headers = {"Content-Type": "application/json",
109
+ "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
110
+ text = text.replace("\n", "")
111
+ data = "{" + '"input": ' + f'"{text}"' + "}"
112
+ data = data.encode("utf-8")
113
+ try:
114
+ ret = requests.post(url, headers=headers, data=data, timeout=5)
115
+ flagged = ret.json()["results"][0]["flagged"]
116
+ except requests.exceptions.RequestException as e:
117
+ flagged = False
118
+ except KeyError as e:
119
+ flagged = False
120
+
121
+ return flagged
122
+
123
+
124
+ def pretty_print_semaphore(semaphore):
125
+ if semaphore is None:
126
+ return "None"
127
+ return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
openai_api.py ADDED
@@ -0,0 +1,501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import json
3
+ import time
4
+ import requests
5
+ import base64
6
+ import uvicorn
7
+ import argparse
8
+
9
+ import torch
10
+ from transformers import AutoModelForCausalLM, LlamaTokenizer, PreTrainedModel, PreTrainedTokenizer, \
11
+ TextIteratorStreamer, CodeGenTokenizerFast as Tokenizer
12
+
13
+ from contextlib import asynccontextmanager
14
+ from loguru import logger
15
+ from typing import List, Literal, Union, Tuple, Optional
16
+
17
+ from fastapi import FastAPI, HTTPException
18
+ from fastapi.middleware.cors import CORSMiddleware
19
+ from pydantic import BaseModel, Field
20
+
21
+ from PIL import Image
22
+ from io import BytesIO
23
+
24
+ import os
25
+ import re
26
+ from threading import Thread
27
+ from moondream import Moondream, detect_device
28
+
29
+ import omnichat
30
+
31
+ # 请求
32
+ class TextContent(BaseModel):
33
+ type: Literal["text"]
34
+ text: str
35
+ class ImageUrl(BaseModel):
36
+ url: str
37
+ class ImageUrlContent(BaseModel):
38
+ type: Literal["image_url"]
39
+ image_url: ImageUrl
40
+ ContentItem = Union[TextContent, ImageUrlContent]
41
+ class ChatMessageInput(BaseModel):
42
+ role: Literal["user", "assistant", "system"]
43
+ content: Union[str, List[ContentItem]]
44
+ name: Optional[str] = None
45
+ class ChatCompletionRequest(BaseModel):
46
+ model: str
47
+ messages: List[ChatMessageInput]
48
+ temperature: Optional[float] = 0.8
49
+ top_p: Optional[float] = 0.8
50
+ max_tokens: Optional[int] = None
51
+ stream: Optional[bool] = False
52
+ # Additional parameters
53
+ repetition_penalty: Optional[float] = 1.0
54
+
55
+ # 响应
56
+ class ChatMessageResponse(BaseModel):
57
+ role: Literal["assistant"]
58
+ content: str = None
59
+ name: Optional[str] = None
60
+ class ChatCompletionResponseChoice(BaseModel):
61
+ index: int
62
+ message: ChatMessageResponse
63
+ class DeltaMessage(BaseModel):
64
+ role: Optional[Literal["user", "assistant", "system"]] = None
65
+ content: Optional[str] = None
66
+ class ChatCompletionResponseStreamChoice(BaseModel):
67
+ index: int
68
+ delta: DeltaMessage
69
+ class UsageInfo(BaseModel):
70
+ prompt_tokens: int = 0
71
+ total_tokens: int = 0
72
+ completion_tokens: Optional[int] = 0
73
+ class ChatCompletionResponse(BaseModel):
74
+ model: str
75
+ object: Literal["chat.completion", "chat.completion.chunk"]
76
+ choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
77
+ created: Optional[int] = Field(default_factory=lambda: int(time.time()))
78
+ usage: Optional[UsageInfo] = None
79
+
80
+ # 图片输入处理
81
+ def process_img(input_data):
82
+ if isinstance(input_data, str):
83
+ # URL
84
+ if input_data.startswith("http://") or input_data.startswith("https://"):
85
+ response = requests.get(input_data)
86
+ image_data = response.content
87
+ pil_image = Image.open(BytesIO(image_data)).convert('RGB')
88
+ # base64
89
+ elif input_data.startswith("data:image/"):
90
+ base64_data = input_data.split(",")[1]
91
+ image_data = base64.b64decode(base64_data)
92
+ pil_image = Image.open(BytesIO(image_data)).convert('RGB')
93
+ # img_path
94
+ else:
95
+ pil_image = Image.open(input_data)
96
+ # PIL
97
+ elif isinstance(input_data, Image.Image):
98
+ pil_image = input_data
99
+ else:
100
+ raise ValueError("data type error")
101
+
102
+ return pil_image
103
+
104
+ # 历史消息处理
105
+ def process_history_and_images(messages: List[ChatMessageInput]) -> Tuple[
106
+ Optional[str], Optional[List[Tuple[str, str]]], Optional[List[Image.Image]]]:
107
+ formatted_history = []
108
+ image_list = []
109
+ last_user_query = ''
110
+
111
+ for i, message in enumerate(messages):
112
+ role = message.role
113
+ content = message.content
114
+
115
+ if isinstance(content, list): # text
116
+ text_content = ' '.join(item.text for item in content if isinstance(item, TextContent))
117
+ else:
118
+ text_content = content
119
+
120
+ if isinstance(content, list): # image
121
+ for item in content:
122
+ if isinstance(item, ImageUrlContent):
123
+ image_url = item.image_url.url
124
+ image = process_img(image_url)
125
+ image_list.append(image)
126
+
127
+ if role == 'user':
128
+ if i == len(messages) - 1: # last message
129
+ last_user_query = text_content
130
+ else:
131
+ formatted_history.append((text_content, ''))
132
+ elif role == 'assistant':
133
+ if formatted_history:
134
+ if formatted_history[-1][1] != '':
135
+ assert False, f"the last query is answered. answer again. {formatted_history[-1][0]}, {formatted_history[-1][1]}, {text_content}"
136
+ formatted_history[-1] = (formatted_history[-1][0], text_content)
137
+ else:
138
+ assert False, f"assistant reply before user"
139
+ else:
140
+ assert False, f"unrecognized role: {role}"
141
+
142
+ return last_user_query, formatted_history, image_list
143
+
144
+ @torch.inference_mode()
145
+ # Moondrean推理
146
+ def generate_stream_moondream(params: dict):
147
+ global model, tokenizer
148
+
149
+ # 输入处理
150
+ def chat_history_to_prompt(history):
151
+ prompt = ""
152
+ for i, (old_query, response) in enumerate(history):
153
+ prompt += f"Question: {old_query}\n\nAnswer: {response}\n\n"
154
+ return prompt
155
+
156
+ messages = params["messages"]
157
+ prompt, formatted_history, image_list = process_history_and_images(messages)
158
+ history = chat_history_to_prompt(formatted_history)
159
+ # 只处理最后一张图
160
+ img = image_list[-1]
161
+
162
+ # 构建输入
163
+ '''
164
+ answer_question(
165
+ self,
166
+ image_embeds,
167
+ question,
168
+ tokenizer,
169
+ chat_history="",
170
+ result_queue=None,
171
+ **kwargs,
172
+ )
173
+ '''
174
+ image_embeds = model.encode_image(img)
175
+ streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
176
+ gen_kwargs = {
177
+ "image_embeds": image_embeds,
178
+ "question": prompt,
179
+ "tokenizer": tokenizer,
180
+ "chat_history": history,
181
+ "result_queue": None,
182
+ "streamer": streamer,
183
+ }
184
+
185
+ thread = Thread(
186
+ target=model.answer_question,
187
+ kwargs=gen_kwargs,
188
+ )
189
+
190
+ input_echo_len = 0
191
+ total_len = 0
192
+ # 启动推理
193
+ thread.start()
194
+ buffer = ""
195
+ for new_text in streamer:
196
+ clean_text = re.sub("<$|END$", "", new_text)
197
+ buffer += clean_text
198
+ yield {
199
+ "text": buffer.strip("<END"),
200
+ "usage": {
201
+ "prompt_tokens": input_echo_len,
202
+ "completion_tokens": total_len - input_echo_len,
203
+ "total_tokens": total_len,
204
+ },
205
+ }
206
+ generated_ret ={
207
+ "text": buffer.strip("<END"),
208
+ "usage": {
209
+ "prompt_tokens": input_echo_len,
210
+ "completion_tokens": total_len - input_echo_len,
211
+ "total_tokens": total_len,
212
+ },
213
+ }
214
+ yield generated_ret
215
+
216
+ # Moondrean单次响应
217
+ def generate_moondream(params: dict):
218
+ for response in generate_stream_moondream(params):
219
+ pass
220
+ return response
221
+
222
+
223
+ @torch.inference_mode()
224
+ # CogVLM推理
225
+ def generate_stream_cogvlm(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, params: dict):
226
+ """
227
+ Generates a stream of responses using the CogVLM model in inference mode.
228
+ It's optimized to handle continuous input-output interactions with the model in a streaming manner.
229
+ """
230
+ messages = params["messages"]
231
+ temperature = float(params.get("temperature", 1.0))
232
+ repetition_penalty = float(params.get("repetition_penalty", 1.0))
233
+ top_p = float(params.get("top_p", 1.0))
234
+ max_new_tokens = int(params.get("max_tokens", 256))
235
+ query, history, image_list = process_history_and_images(messages)
236
+
237
+ logger.debug(f"==== request ====\n{query}")
238
+
239
+ # only can slove the latest picture
240
+ input_by_model = model.build_conversation_input_ids(tokenizer, query=query, history=history,
241
+ images=[image_list[-1]])
242
+ inputs = {
243
+ 'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
244
+ 'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
245
+ 'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
246
+ 'images': [[input_by_model['images'][0].to(DEVICE).to(torch_type)]],
247
+ }
248
+ if 'cross_images' in input_by_model and input_by_model['cross_images']:
249
+ inputs['cross_images'] = [[input_by_model['cross_images'][0].to(DEVICE).to(torch_type)]]
250
+
251
+ input_echo_len = len(inputs["input_ids"][0])
252
+ streamer = TextIteratorStreamer(tokenizer=tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
253
+ gen_kwargs = {
254
+ "repetition_penalty": repetition_penalty,
255
+ "max_new_tokens": max_new_tokens,
256
+ "do_sample": False,
257
+ "top_p": top_p,
258
+ 'streamer': streamer,
259
+ }
260
+ if temperature > 1e-5:
261
+ gen_kwargs["temperature"] = temperature
262
+
263
+ total_len = 0
264
+ generated_text = ""
265
+ with torch.no_grad():
266
+ model.generate(**inputs, **gen_kwargs)
267
+ for next_text in streamer:
268
+ generated_text += next_text
269
+ yield {
270
+ "text": generated_text,
271
+ "usage": {
272
+ "prompt_tokens": input_echo_len,
273
+ "completion_tokens": total_len - input_echo_len,
274
+ "total_tokens": total_len,
275
+ },
276
+ }
277
+ ret = {
278
+ "text": generated_text,
279
+ "usage": {
280
+ "prompt_tokens": input_echo_len,
281
+ "completion_tokens": total_len - input_echo_len,
282
+ "total_tokens": total_len,
283
+ },
284
+ }
285
+ yield ret
286
+
287
+ # CogVLM单次响应
288
+ def generate_cogvlm(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, params: dict):
289
+
290
+ for response in generate_stream_cogvlm(model, tokenizer, params):
291
+ pass
292
+ return response
293
+
294
+ def generate_minicpm(model, params):
295
+ messages = params["messages"]
296
+ query, history, image_list = process_history_and_images(messages)
297
+ msgs = history
298
+ msgs.append({'role': 'user', 'content': query})
299
+ image = image_list[-1]
300
+ # image is a PIL image
301
+ buffer = BytesIO()
302
+ image.save(buffer, format="JPEG") # You can adjust the format as needed
303
+ buffer.seek(0)
304
+ image_base64 = base64.b64encode(buffer.read())
305
+ image_base64_str = image_base64.decode("utf-8")
306
+ input = {'image': image_base64_str, 'question': json.dumps(msgs)}
307
+ generation = model.chat(input)
308
+ response = {"text": generation, "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}}
309
+ print(response)
310
+ return response
311
+
312
+ # 流式响应
313
+ async def predict(model_id: str, params: dict):
314
+ return "no stream"
315
+
316
+ torch.set_grad_enabled(False)
317
+ # 生命周期管理器,结束清显存
318
+ @asynccontextmanager
319
+ async def lifespan(app: FastAPI):
320
+ yield
321
+ if torch.cuda.is_available():
322
+ torch.cuda.empty_cache()
323
+ torch.cuda.ipc_collect()
324
+ app = FastAPI(lifespan=lifespan)
325
+ # 允许跨域
326
+ app.add_middleware(
327
+ CORSMiddleware,
328
+ allow_origins=["*"],
329
+ allow_credentials=True,
330
+ allow_methods=["*"],
331
+ allow_headers=["*"],
332
+ )
333
+
334
+ # 对话路由
335
+ @app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
336
+ async def create_chat_completion(request: ChatCompletionRequest):
337
+ global model, tokenizer
338
+
339
+ # 检查请求
340
+ if len(request.messages) < 1 or request.messages[-1].role == "assistant":
341
+ raise HTTPException(status_code=400, detail="Invalid request")
342
+
343
+ gen_params = dict(
344
+ messages=request.messages,
345
+ temperature=request.temperature,
346
+ top_p=request.top_p,
347
+ max_tokens=request.max_tokens or 1024,
348
+ echo=False,
349
+ stream=request.stream,
350
+ )
351
+
352
+ # 流式响应
353
+ if request.stream:
354
+ generate = predict(request.model, gen_params)
355
+ return
356
+
357
+ # 单次响应
358
+ if STATE_MOD == "cog":
359
+ response = generate_cogvlm(model, tokenizer, gen_params)
360
+ elif STATE_MOD == "moon":
361
+ response = generate_moondream(gen_params)
362
+ elif STATE_MOD == "mini":
363
+ response = generate_minicpm(model, gen_params)
364
+ usage = UsageInfo()
365
+ message = ChatMessageResponse(
366
+ role="assistant",
367
+ content=response["text"],
368
+ )
369
+ logger.debug(f"==== message ====\n{message}")
370
+ choice_data = ChatCompletionResponseChoice(
371
+ index=0,
372
+ message=message,
373
+ )
374
+ task_usage = UsageInfo.model_validate(response["usage"])
375
+ for usage_key, usage_value in task_usage.model_dump().items():
376
+ setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
377
+ return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion", usage=usage)
378
+
379
+ # 模型切换路由配置
380
+ STATE_MOD = "moon"
381
+ MODEL_PATH = ""
382
+
383
+ # 模型加载
384
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
385
+ def load_mod(model_input, mod_type):
386
+ global model, tokenizer, language_processor_version
387
+ if mod_type == "cog":
388
+ tokenizer_path = os.environ.get("TOKENIZER_PATH", 'lmsys/vicuna-7b-v1.5')
389
+ tokenizer = LlamaTokenizer.from_pretrained(
390
+ tokenizer_path,
391
+ trust_remote_code=True,
392
+ signal_type=language_processor_version
393
+ )
394
+ if 'cuda' in DEVICE:
395
+ model = AutoModelForCausalLM.from_pretrained(
396
+ model_input,
397
+ trust_remote_code=True,
398
+ load_in_4bit=True,
399
+ torch_dtype=torch_type,
400
+ low_cpu_mem_usage=True
401
+ ).eval()
402
+ else:
403
+ model = AutoModelForCausalLM.from_pretrained(
404
+ model_input,
405
+ trust_remote_code=True
406
+ ).float().to(DEVICE).eval()
407
+ elif mod_type == "moon":
408
+ device, dtype = detect_device()
409
+ model = Moondream.from_pretrained(model_input).to(device=device, dtype=dtype).eval()
410
+ tokenizer = Tokenizer.from_pretrained(model_input)
411
+ elif mod_type == "mini":
412
+ model, tokenizer = omnichat.OmniLMMChat(model_input), None
413
+
414
+ @app.post("/v1/Cog-vqa")
415
+ async def switch_vqa():
416
+ global model, STATE_MOD, mod_vqa, language_processor_version
417
+ STATE_MOD = "cog"
418
+ del model
419
+ model = None
420
+ language_processor_version = "chat_old"
421
+ load_mod(mod_vqa, STATE_MOD)
422
+
423
+ @app.post("/v1/Cog-chat")
424
+ async def switch_chat():
425
+ global model, STATE_MOD, mod_chat, language_processor_version
426
+ STATE_MOD = "cog"
427
+ del model
428
+ model = None
429
+ language_processor_version = "chat"
430
+ load_mod(mod_chat, STATE_MOD)
431
+
432
+ @app.post("/v1/moondream")
433
+ async def switch_moon():
434
+ global model, STATE_MOD, mod_moon
435
+ STATE_MOD = "moon"
436
+ del model
437
+ model = None
438
+ load_mod(mod_moon, STATE_MOD)
439
+
440
+ @app.post("/v1/MiniCPM")
441
+ async def switch_mini():
442
+ global model, STATE_MOD, mod_mini
443
+ STATE_MOD = "mini"
444
+ del model
445
+ model = None
446
+ load_mod(mod_mini, STATE_MOD)
447
+
448
+ # 关闭
449
+ @app.post("/v1/close")
450
+ async def close():
451
+ global model
452
+ del model
453
+ model = None
454
+
455
+ gc.collect()
456
+
457
+ parser = argparse.ArgumentParser()
458
+ parser.add_argument("--mod", type=str, default="moondrean")
459
+ args = parser.parse_args()
460
+ mod = args.mod
461
+
462
+ mod_vqa = './models/cogagent-vqa-hf'
463
+ mod_chat = './models/cogagent-chat-hf'
464
+ mod_moon = './models/moondream'
465
+ mod_mini = './models/MiniCPM-Llama3-V-2_5'
466
+
467
+ '''
468
+ mod_list = [
469
+ "moondrean",
470
+ "Cog-vqa",
471
+ "Cog-chat"
472
+ "MiniCPM"
473
+ ]
474
+ '''
475
+
476
+ if mod == "Cog-vqa":
477
+ STATE_MOD = "cog"
478
+ MODEL_PATH = mod_vqa
479
+ language_processor_version = "chat_old"
480
+ elif mod == "Cog-chat":
481
+ STATE_MOD = "cog"
482
+ MODEL_PATH = mod_chat
483
+ language_processor_version = "chat"
484
+ elif mod == "moondream":
485
+ STATE_MOD = "moon"
486
+ MODEL_PATH = mod_moon
487
+ elif mod == "MiniCPM":
488
+ STATE_MOD = "mini"
489
+ MODEL_PATH = mod_mini
490
+
491
+ if __name__ == "__main__":
492
+ if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8:
493
+ torch_type = torch.bfloat16
494
+ else:
495
+ torch_type = torch.float16
496
+
497
+ print("========Use torch type as:{} with device:{}========\n\n".format(torch_type, DEVICE))
498
+
499
+ load_mod(MODEL_PATH, STATE_MOD)
500
+
501
+ uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
start_linux_mac.sh ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ export HF_HOME="huggingface"
3
+
4
+ python ./install_script/check_open.py
5
+
6
+ python gpt-caption.py --share "$@"
7
+
8
+ read -p "Press any key to continue . . . "
start_windows.bat ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+ set HF_HOME=huggingface
3
+
4
+ call myenv\Scripts\activate
5
+ python ./install_script/check_open.py
6
+
7
+ python gpt-caption.py %*
8
+
9
+ pause
utils/__init__.py ADDED
File without changes
utils/merge_model.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- encoding: utf-8 -*-
2
+ import os, sys
3
+ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
4
+
5
+ import torch
6
+ import argparse
7
+ from models.cogvlm_model import FineTuneTestCogVLMModel
8
+ from sat.training.model_io import save_checkpoint
9
+
10
+ def main():
11
+ parser = argparse.ArgumentParser()
12
+ parser.add_argument("--version", type=str, default="base", help='version to interact with')
13
+ parser.add_argument("--from_pretrained", type=str, default="checkpoints/merged_lora", help='pretrained ckpt')
14
+ parser.add_argument("--fp16", action="store_true")
15
+ parser.add_argument("--bf16", action="store_true")
16
+ args = parser.parse_args()
17
+ rank = int(os.environ.get('RANK', 0))
18
+ world_size = int(os.environ.get('WORLD_SIZE', 1))
19
+ parser = FineTuneTestCogVLMModel.add_model_specific_args(parser)
20
+ args = parser.parse_args()
21
+
22
+ # load model
23
+ model, model_args = FineTuneTestCogVLMModel.from_pretrained(
24
+ args.from_pretrained,
25
+ args=argparse.Namespace(
26
+ deepspeed=None,
27
+ local_rank=rank,
28
+ rank=rank,
29
+ world_size=world_size,
30
+ model_parallel_size=world_size,
31
+ mode='inference',
32
+ skip_init=True,
33
+ use_gpu_initialization=True if torch.cuda.is_available() else False,
34
+ device='cuda',
35
+ **vars(args)
36
+ ), url='local', overwrite_args={'model_parallel_size': 1})
37
+ model = model.eval()
38
+ model_args.save = './checkpoints/merged_model_{}'.format(model_args.eva_args["image_size"][0])
39
+ save_checkpoint(1, model, None, None, model_args)
40
+
41
+ if __name__ == "__main__":
42
+ main()
utils/split_dataset.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+
4
+ def find_all_files(path, suffix=".jpg"):
5
+ target_files = []
6
+ for cur_dir, _, files in os.walk(path, followlinks=True):
7
+ for f in files:
8
+ if f.endswith(suffix):
9
+ target_files.append(os.path.join(cur_dir, f))
10
+ print(f'find {len(target_files)} files...')
11
+ return target_files
12
+
13
+ all_files = find_all_files('archive')
14
+ os.makedirs("archive_split", exist_ok=True)
15
+ os.makedirs("archive_split/train", exist_ok=True)
16
+ os.makedirs("archive_split/valid", exist_ok=True)
17
+ os.makedirs("archive_split/test", exist_ok=True)
18
+
19
+ import random
20
+ random.seed(2023)
21
+ random.shuffle(all_files)
22
+ train = all_files[:8000]
23
+ valid = all_files[8000:8000+500]
24
+ test = all_files[8000+500:8000+500+1500]
25
+
26
+ print("building train")
27
+ for file in train:
28
+ shutil.move(file, os.path.join("archive_split/train", file.split("/")[-1]))
29
+ print("building valid")
30
+ for file in valid:
31
+ shutil.move(file, os.path.join("archive_split/valid", file.split("/")[-1]))
32
+ print("building test")
33
+ for file in test:
34
+ shutil.move(file, os.path.join("archive_split/test", file.split("/")[-1]))
35
+ print("done")
utils/utils/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .chat import chat
2
+ from .language import llama2_tokenizer, llama2_text_processor, llama2_text_processor_inference
3
+ from .vision import get_image_processor
4
+ from .grounding_parser import parse_response
5
+ from .dataset import ItemDataset
utils/utils/chat.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- encoding: utf-8 -*-
2
+ '''
3
+ @File : chat.py
4
+ @Time : 2023/05/08 19:10:08
5
+ @Author : Ming Ding
6
+ @Contact : dm18@mails.tsinghua.edu.cn
7
+ '''
8
+
9
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
10
+ import requests
11
+ from PIL import Image
12
+ from io import BytesIO
13
+
14
+ import torch
15
+ from sat.generation.autoregressive_sampling import filling_sequence, stream_filling_sequence, get_masks_and_position_ids_default
16
+ from sat.generation.sampling_strategies import BaseStrategy, BeamSearchStrategy
17
+ from sat.mpu import get_model_parallel_rank
18
+
19
+ def process_image(image_path, img_processor, cross_img_processor, image):
20
+ if image is None:
21
+ if image_path.startswith("http"):
22
+ response = requests.get(image_path, timeout=10)
23
+ image = Image.open(BytesIO(response.content))
24
+ else:
25
+ image = Image.open(image_path)
26
+
27
+ if image is not None and isinstance(image, Image.Image):
28
+ pil_img = image.convert('RGB')
29
+ img_dict = img_processor(pil_img)
30
+ cross_img_dict = cross_img_processor(pil_img) if cross_img_processor is not None else {}
31
+ ret = (img_dict, pil_img, cross_img_dict)
32
+ else:
33
+ ret = image
34
+ return ret
35
+
36
+ def chat(image_path, model, text_processor, img_processor,
37
+ query: str, history: List[Tuple[str, str]] = None, cross_img_processor=None, image: Image = None,
38
+ max_length: int = 4096, top_p=0.95, top_k=5, temperature=0.95, repetition_penalty=1.0,
39
+ invalid_slices=[], no_prompt=False, args=None
40
+ ):
41
+ if image is None:
42
+ assert image_path is not None
43
+ if not history:
44
+ history = []
45
+
46
+ if no_prompt:
47
+ query = ''
48
+ prompt = text_processor.history_to_prompt(query, history)
49
+
50
+ (torch_image, pil_img, cross_image) = process_image(image_path, img_processor, cross_img_processor, image)
51
+
52
+ if torch_image is not None:
53
+ for k in torch_image:
54
+ if type(torch_image[k]) is torch.Tensor and torch_image[k].dtype is not torch.int and torch_image[k].dtype is not torch.long:
55
+ torch_image[k] = torch_image[k].to(torch.bfloat16 if args.bf16 else torch.float16)
56
+ if type(torch_image[k]) is torch.Tensor:
57
+ torch_image[k] = torch_image[k].to(next(model.parameters()).device)
58
+
59
+ if cross_image is not None:
60
+ for k in cross_image:
61
+ if type(cross_image[k]) is torch.Tensor and cross_image[k].dtype is not torch.int and cross_image[k].dtype is not torch.long:
62
+ cross_image[k] = cross_image[k].to(torch.bfloat16 if args.bf16 else torch.float16)
63
+ if type(cross_image[k]) is torch.Tensor:
64
+ cross_image[k] = cross_image[k].to(next(model.parameters()).device)
65
+
66
+ inputs_dic = text_processor(prompt)
67
+ for k in inputs_dic:
68
+ if type(inputs_dic[k]) is torch.Tensor and inputs_dic[k].dtype is not torch.int and inputs_dic[k].dtype is not torch.long:
69
+ inputs_dic[k] = inputs_dic[k].to(torch.bfloat16 if args.bf16 else torch.float16)
70
+ if type(inputs_dic[k]) is torch.Tensor:
71
+ inputs_dic[k] = inputs_dic[k].to(next(model.parameters()).device)
72
+ input_ids = inputs_dic['input_ids'].to(model.parameters().__next__().device)[0]
73
+
74
+ if max_length-len(input_ids) <= 1:
75
+ response = "The prompt exceeds the context length limit, please try again."
76
+ return response, history, (torch_image, pil_img)
77
+
78
+ seq = torch.cat(
79
+ [input_ids, torch.tensor([-1]*(max_length-len(input_ids)), device=input_ids.device)], dim=0
80
+ )
81
+ strategy = BaseStrategy(temperature=temperature, top_p=top_p, top_k=top_k, end_tokens=[text_processor.tokenizer.eos_token_id],
82
+ invalid_slices=invalid_slices, repetition_penalty=repetition_penalty)
83
+ # use beam search to get a better result
84
+ # strategy = BeamSearchStrategy(temperature=temperature, top_p=top_p, top_k=top_k, end_tokens=[text_processor.tokenizer.eos_token_id],
85
+ # num_beams=5, consider_end=True, repetition_penalty=repetition_penalty)
86
+ get_func = text_processor.get_func(input_ids, **inputs_dic) if hasattr(text_processor, 'get_func') else get_masks_and_position_ids_default
87
+
88
+ img_inputs = {'vision_'+k: v for k, v in torch_image.items()}
89
+ if cross_image is not None:
90
+ img_inputs = {**img_inputs, **{'cross_'+k:v for k,v in cross_image.items()}}
91
+ inputs_dic.pop('input_ids')
92
+ inputs = {**img_inputs, **inputs_dic}
93
+
94
+ if args.stream_chat:
95
+ filling_stream = stream_filling_sequence(
96
+ model, seq,
97
+ batch_size=1,
98
+ get_masks_and_position_ids=get_func,
99
+ strategy=strategy,
100
+ **inputs
101
+ )
102
+ if get_model_parallel_rank() == 0:
103
+ if 'chinese' in args and not args.chinese:
104
+ print("Model: ", end='')
105
+ else:
106
+ print("模型��", end='')
107
+ offset = len(text_processor.tokenizer.decode(input_ids))
108
+ for tokens, mems in filling_stream:
109
+ torch.cuda.empty_cache()
110
+ tmp_response = text_processor.tokenizer.decode(tokens[0])
111
+ if tmp_response[-1] != "�":
112
+ if get_model_parallel_rank() == 0:
113
+ tmp_response_offseted = tmp_response[offset:]
114
+ if hasattr(text_processor, 'process_response'):
115
+ tmp_response_offseted = text_processor.process_response(tmp_response_offseted)
116
+ print(tmp_response_offseted, end='', flush=True)
117
+ offset = len(tmp_response)
118
+ if get_model_parallel_rank() == 0:
119
+ print()
120
+ output = strategy.finalize(tokens, mems)[0]
121
+
122
+ response = text_processor.tokenizer.decode(output[0])
123
+ else:
124
+ output = filling_sequence(
125
+ model, seq,
126
+ batch_size=1,
127
+ get_masks_and_position_ids=get_func,
128
+ strategy=strategy,
129
+ **inputs
130
+ )[0] # drop memory
131
+
132
+ # ---------------
133
+ # port from inference_glm.py, more general than chat mode
134
+ # clip -1s and fill back generated things into seq
135
+ if type(output) is not list:
136
+ output_list = output.tolist()
137
+ else:
138
+ output_list = output
139
+
140
+ response = text_processor.tokenizer.decode(output_list[0])
141
+ # print('original:', response)
142
+ if hasattr(text_processor, 'process_response'):
143
+ response = text_processor.process_response(response)
144
+ response = response.split(text_processor.sep)[-1].strip()
145
+ if get_model_parallel_rank() == 0:
146
+ from utils.utils.grounding_parser import parse_response
147
+ parse_response(pil_img, response)
148
+ history = history + [(query, response)]
149
+ return response, history, (torch_image, pil_img, cross_image)
utils/utils/dataset.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import logging
3
+ import random
4
+ import logging
5
+ import jsonlines
6
+ from io import BytesIO
7
+ from PIL import Image
8
+ from torch.utils.data import Dataset
9
+ from sat.helpers import print_rank0
10
+
11
+ def find_all_files(path, suffix=".jpg"):
12
+ target_files = []
13
+ for cur_dir, _, files in os.walk(path, followlinks=True):
14
+ for f in files:
15
+ if f.endswith(suffix):
16
+ target_files.append(os.path.join(cur_dir, f))
17
+ print_rank0(f'find {len(target_files)} files...')
18
+ return target_files
19
+
20
+ class ItemDataset(Dataset):
21
+ def __init__(self, image_processor, text_processor, args, data_dirs, cross_image_processor=None, **kwargs):
22
+ super().__init__()
23
+ self.data = self.load_data(data_dirs)
24
+ self.image_processor, self.text_processor, self.cross_image_processor = image_processor, text_processor, cross_image_processor
25
+
26
+ def process_img(self, img):
27
+ img_dict = {'vision': self.image_processor(img)}
28
+ if self.cross_image_processor:
29
+ img_dict.update({'cross': self.cross_image_processor(img)})
30
+ return img_dict
31
+
32
+ def process_text(self, answer, prompt):
33
+ return self.text_processor(answer, prompt)
34
+
35
+ def load_data(self, data_dir):
36
+ all_files = find_all_files(data_dir, suffix=".jpg")
37
+ print_rank0(f"find {len(all_files)} samples in all...")
38
+ return all_files
39
+
40
+ def __len__(self):
41
+ return len(self.data)
42
+
43
+ def __getitem__(self, index):
44
+ data = self.data[index]
45
+ # img
46
+ try:
47
+ img = Image.open(data).convert('RGB')
48
+ except Exception as e:
49
+ print_rank0(e, level=logging.WARNING)
50
+ return {}
51
+ img_dict = self.process_img(img)
52
+ # text
53
+ label = data.split('/')[-1].split('.')[0]
54
+ uni_key = label
55
+ text_dict = self.process_text(label, "CAPTCHA:")
56
+ if text_dict is None:
57
+ print_rank0(f"Process text failed. Please check the max_target_length & max_source_length.\n The data is {data}", level=logging.WARNING)
58
+ return {}
59
+ # other attr
60
+ ret = {**img_dict, **text_dict, "question_id": uni_key}
61
+ return ret
utils/utils/grounding_parser.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import seaborn as sns
2
+ from PIL import Image, ImageDraw, ImageFont
3
+ import matplotlib.font_manager
4
+ import spacy
5
+ import re
6
+
7
+ nlp = spacy.load("en_core_web_sm")
8
+
9
+ def draw_boxes(image, boxes, texts, output_fn='output.png'):
10
+ box_width = 5
11
+ color_palette = sns.color_palette("husl", len(boxes))
12
+ colors = [(int(r*255), int(g*255), int(b*255)) for r, g, b in color_palette]
13
+
14
+ width, height = image.size
15
+ absolute_boxes = [[(int(box[0] * width), int(box[1] * height), int(box[2] * width), int(box[3] * height)) for box in b] for b in boxes]
16
+
17
+ overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
18
+ draw = ImageDraw.Draw(overlay)
19
+ font_path = sorted(matplotlib.font_manager.findSystemFonts(fontpaths=None, fontext='ttf'))[0]
20
+ font = ImageFont.truetype(font_path, size=26)
21
+
22
+ for box, text, color in zip(absolute_boxes, texts, colors):
23
+ for b in box:
24
+ draw.rectangle(b, outline=color, width=box_width)
25
+ if not text:
26
+ continue
27
+ splited_text = text.split('\n')
28
+ num_lines = len(splited_text)
29
+ text_width, text_height = font.getbbox(splited_text[0])[-2:]
30
+ y_start = b[3] - text_height * num_lines - box_width
31
+ if b[2] - b[0] < 100 or b[3] - b[1] < 100:
32
+ y_start = b[3]
33
+ for i, line in enumerate(splited_text):
34
+ text_width, text_height = font.getbbox(line)[-2:]
35
+ x = b[0] + box_width
36
+ y = y_start + text_height * i
37
+ draw.rectangle([x, y, x+text_width, y+text_height], fill=(128, 128, 128, 160))
38
+ draw.text((x, y), line, font=font, fill=(255, 255, 255))
39
+ img_with_overlay = Image.alpha_composite(image.convert('RGBA'), overlay).convert('RGB')
40
+ img_with_overlay.save(output_fn)
41
+
42
+ def boxstr_to_boxes(box_str):
43
+ boxes = [[int(y)/1000 for y in x.split(',')] for x in box_str.split(';') if x.replace(',', '').isdigit()]
44
+ return boxes
45
+
46
+ def text_to_dict(text):
47
+ doc = nlp(text)
48
+
49
+ box_matches = list(re.finditer(r'\[\[([^\]]+)\]\]', text))
50
+ box_positions = [match.start() for match in box_matches]
51
+
52
+ noun_phrases = []
53
+ boxes = []
54
+
55
+ for match, box_position in zip(box_matches, box_positions):
56
+ nearest_np_start = max([0] + [chunk.start_char for chunk in doc.noun_chunks if chunk.end_char <= box_position])
57
+ noun_phrase = text[nearest_np_start:box_position].strip()
58
+ if noun_phrase and noun_phrase[-1] == '?':
59
+ noun_phrase = text[:box_position].strip()
60
+ box_string = match.group(1)
61
+
62
+ noun_phrases.append(noun_phrase)
63
+ boxes.append(boxstr_to_boxes(box_string))
64
+
65
+ pairs = []
66
+ for noun_phrase, box_string in zip(noun_phrases, boxes):
67
+ pairs.append((noun_phrase.lower(), box_string))
68
+ return dict(pairs)
69
+
70
+ def parse_response(img, response, output_fn='output.png'):
71
+ img = img.convert('RGB')
72
+ width, height = img.size
73
+ ratio = min(1920 / width, 1080 / height)
74
+ new_width = int(width * ratio)
75
+ new_height = int(height * ratio)
76
+ new_img = img.resize((new_width, new_height), Image.LANCZOS)
77
+ pattern = r"\[\[(.*?)\]\]"
78
+ positions = re.findall(pattern, response)
79
+ boxes = [[[int(y) for y in x.split(',')] for x in pos.split(';') if x.replace(',', '').isdigit()] for pos in positions]
80
+ dic = text_to_dict(response)
81
+ if not dic:
82
+ texts = []
83
+ boxes = []
84
+ else:
85
+ texts, boxes = zip(*dic.items())
86
+ draw_boxes(new_img, boxes, texts, output_fn=output_fn)