Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,831 Bytes
5197529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import gradio as gr
from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs
import numpy as np
import os
from twilio.rest import Client
import base64
import openai
import re
from huggingface_hub import InferenceClient
from pydub import AudioSegment
import io
from dotenv import load_dotenv
load_dotenv()
hf_client = InferenceClient()
spinner_html = open("spinner.html").read()
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
if account_sid and auth_token:
client = Client(account_sid, auth_token)
token = client.tokens.create()
rtc_configuration = {
"iceServers": token.ice_servers,
"iceTransportPolicy": "relay",
}
else:
rtc_configuration = None
client = openai.OpenAI(
api_key=os.environ.get("SAMBANOVA_API_KEY"),
base_url="https://api.sambanova.ai/v1",
)
system_prompt = "You are an AI coding assistant. Your task is to write single-file HTML applications based on a user's request. Only return the necessary code. Include all necessary imports and styles. You may also be asked to edit your original response."
user_prompt = "Please write a single-file HTML application to fulfill the following request.\nThe message:{user_message}\nCurrent code you have written:{code}"
def extract_html_content(text):
"""
Extract content including HTML tags.
"""
match = re.search(r'<!DOCTYPE html>.*?</html>', text, re.DOTALL)
return match.group(0) if match else None
def audio_to_bytes(audio: tuple[int, np.ndarray]):
audio_segment = AudioSegment(
audio[1].squeeze().tobytes(),
frame_rate=audio[0],
sample_width=audio[1].dtype.itemsize,
channels=1
)
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
# Get the MP3 bytes
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
return mp3_bytes
def display_in_sandbox(code):
encoded_html = base64.b64encode(code.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
return f"<iframe src=\"{data_uri}\" width=\"100%\" height=\"600px\"></iframe>"
def generate(user_message: tuple[int, np.ndarray],
history: list[dict],
code: str):
yield AdditionalOutputs(history, spinner_html)
text = hf_client.automatic_speech_recognition(audio_to_bytes(user_message)).text
user_msg_formatted = user_prompt.format(user_message=text, code=code)
history.append({"role": "user", "content": user_msg_formatted})
response = client.chat.completions.create(
model='Meta-Llama-3.1-70B-Instruct',
messages=history,
temperature = 0.1,
top_p = 0.1
)
output = response.choices[0].message.content
html_code = extract_html_content(output)
history.append({"role": "assistant", "content": output})
yield AdditionalOutputs(history, html_code)
with gr.Blocks(css=".code-component {max-height: 500px !important}") as demo:
history = gr.State([{"role": "system", "content": system_prompt}])
with gr.Row():
with gr.Column(scale=1):
gr.HTML(
"""
<h1 style='text-align: center'>
Llama Code Editor
</h1>
<h2 style='text-align: center'>
Powered by SambaNova and Gradio-WebRTC ⚡️
</h2>
<p style='text-align: center'>
Create and edit single-file HTML applications with just your voice!.
</p>
<p style='text-align: center'>
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation.
</p>
"""
)
webrtc = WebRTC(rtc_configuration=rtc_configuration,
mode="send", modality="audio")
with gr.Column(scale=10):
with gr.Tabs():
with gr.Tab("Sandbox"):
sandbox = gr.HTML(value=open("sandbox.html").read())
with gr.Tab("Code"):
code = gr.Code(language="html", max_lines=50, interactive=False, elem_classes="code-component")
with gr.Tab("Chat"):
cb = gr.Chatbot(type="messages")
webrtc.stream(ReplyOnPause(generate),
inputs=[webrtc, history, code],
outputs=[webrtc], time_limit=90)
webrtc.on_additional_outputs(lambda history, code: (history, code, history),
outputs=[history, code, cb])
code.change(display_in_sandbox, code, sandbox, queue=False)
if __name__ == "__main__":
demo.launch()
|