File size: 5,757 Bytes
d58f539
2558f9d
f7de418
d58f539
f7de418
 
d6247a0
dec22aa
 
ef46ff0
 
 
 
 
16020a5
7fa63ee
 
 
 
 
 
 
 
 
f8bd65e
2558f9d
694882d
 
d6247a0
 
694882d
d6247a0
a0f34aa
d6247a0
 
 
 
 
 
 
 
 
694882d
913a139
 
d6247a0
 
 
7fa63ee
 
 
 
d6247a0
f8bd65e
 
7fa63ee
 
 
 
 
 
 
694882d
7fa63ee
 
 
694882d
7fa63ee
 
 
e9633ca
 
 
 
 
7fa63ee
e9633ca
 
 
9f81a69
d6247a0
f8bd65e
d58f539
2558f9d
 
 
f8bd65e
 
2558f9d
 
 
 
f8bd65e
 
ef46ff0
e65a834
a0f34aa
694882d
7fa63ee
694882d
 
7fa63ee
694882d
 
e9633ca
 
 
 
694882d
f8bd65e
f7de418
ef46ff0
 
 
a0f34aa
ef46ff0
a0f34aa
913a139
 
a0f34aa
f7de418
f8bd65e
9ff561f
f8bd65e
 
9f81a69
a0f34aa
f8bd65e
 
ef46ff0
913a139
f8bd65e
 
 
 
7049daf
913a139
 
d6247a0
a0f34aa
7fa63ee
7049daf
7fa63ee
7049daf
f8bd65e
a0f34aa
 
e27f5f8
a0f34aa
 
 
 
 
 
 
e27f5f8
7fa63ee
f8bd65e
2d5961d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs
import numpy as np
import io
from pydub import AudioSegment
import openai
import time
import base64

def create_client(api_key):
    return openai.OpenAI(
        base_url="https://llama3-1-8b.lepton.run/api/v1/",
        api_key=api_key
    )


def update_or_append_conversation(conversation, id, role, content):
    # Find if there's an existing message with the given id
    for message in conversation:
        if message.get("id") == id and message.get("role") == role:
            message["content"] = content
            return
    # If not found, append a new message
    conversation.append({"id": id, "role": role, "content": content})


def generate_response_and_audio(audio_bytes: bytes, lepton_conversation: list[str], client: OpenAI, output_format: str):
    if client is None:
        raise gr.Error("Please enter a valid API key first.")

    bitrate = 128 if output_format == "mp3" else 32  # Higher bitrate for MP3, lower for OPUS
    audio_data = base64.b64encode(audio_bytes).decode()

    try:
        stream = state.client.chat.completions.create(
            extra_body={
                "require_audio": True,
                "tts_preset_id": "jessica",
                "tts_audio_format": format_,
                "tts_audio_bitrate": bitrate
            },
            model="llama3.1-8b",
            messages=lepton_conversation + [{"role": "user", "content": [{"type": "audio", "data": audio_data}]}],
            temperature=0.7,
            max_tokens=256,
            stream=True,
        )

        id = str(time.time())
        full_response = ""
        asr_result = ""

        for chunk in stream:
            if not chunk.choices:
                continue
            delta = chunk.choices[0].delta
            content = delta.get("content", "")
            audio = getattr(chunk.choices[0], "audio", [])
            asr_results = getattr(chunk.choices[0], "asr_results", [])

            if asr_results:
                asr_result += "".join(asr_results)
                yield id, None, asr_result, None

            if content:
                full_response += content
                yield id, full_response, None, None

            if audio:
                # Accumulate audio bytes and yield them
                audio_bytes_accumulated = b''.join([base64.b64decode(a) for a in audio])
                audio = AudioSegment.from_file(io.BytesIO(audio_bytes_accumulated))
                audio_array = np.array(audio.get_array_of_samples(), dtype=np.int16).reshape(1, -1)
                print("audio.shape", audio_array.shape)
                print("sampling_rate", audio.frame_rate)

                yield id, None, None, (audio.frame_rate, audio_array)

        yield id, full_response, asr_result, None

    except Exception as e:
        raise gr.Error(f"Error during audio streaming: {e}")

def response(audio: tuple[int, np.ndarray], lepton_conversation: list[dict],
             gradio_conversation: list[dict], client: OpenAI, output_format: str):
    
    audio_buffer = io.BytesIO()
    segment = AudioSegment(
        audio[1].tobytes(),
        frame_rate=audio[0],
        sample_width=audio[1].dtype.itemsize,
        channels=1,
    )
    segment.export(audio_buffer, format="wav")

    generator = generate_response_and_audio(audio_buffer.getvalue(), state)

    for id, text, asr, audio in generator:
        if asr:
            update_or_append_conversation(lepton_conversation, id, "user", asr)
            update_or_append_conversation(gradio_conversation, id, "user", asr)
        if text:
            update_or_append_conversation(lepton_conversation, id, "assistant", text)
            update_or_append_conversation(gradio_conversation, id, "assistant", text)
        if audio:
            yield audio, AdditionalOutputs(lepton_conversation, gradio_conversation)
        else:
            yield AdditionalOutputs(lepton_conversation, gradio_conversation)


with gr.Blocks() as demo:
    with gr.Row():
        api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key")
        set_key_button = gr.Button("Set API Key")

    api_key_status = gr.Textbox(label="API Key Status", interactive=False)

    with gr.Row():
        format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format")

    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(label="Input Audio", sources="microphone", type="numpy")
        with gr.Column():
            chatbot = gr.Chatbot(label="Conversation", type="messages")
            output_audio = gr.Audio(label="Output Audio", autoplay=True)

    state = gr.State(AppState())

    set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state])
    format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state])

    stream = input_audio.stream(
        process_audio,
        [input_audio, state],
        [input_audio, state],
        stream_every=0.25,  # Reduced to make it more responsive
        time_limit=60,  # Increased to allow for longer messages
    )

    stream.then(
        maybe_call_response,
        inputs=[state],
        outputs=[chatbot, output_audio, state],
    )

    # Automatically restart recording after the assistant's response
    restart = output_audio.change(
        start_recording_user,
        [state],
        [input_audio]
    )

    # Add a "Stop Conversation" button
    cancel = gr.Button("Stop Conversation", variant="stop")
    cancel.click(lambda: (AppState(stopped=True), gr.update(recording=False)), None,
                 [state, input_audio], cancels=[stream, restart])

    demo.launch()