File size: 5,757 Bytes
d58f539 2558f9d f7de418 d58f539 f7de418 d6247a0 dec22aa ef46ff0 16020a5 7fa63ee f8bd65e 2558f9d 694882d d6247a0 694882d d6247a0 a0f34aa d6247a0 694882d 913a139 d6247a0 7fa63ee d6247a0 f8bd65e 7fa63ee 694882d 7fa63ee 694882d 7fa63ee e9633ca 7fa63ee e9633ca 9f81a69 d6247a0 f8bd65e d58f539 2558f9d f8bd65e 2558f9d f8bd65e ef46ff0 e65a834 a0f34aa 694882d 7fa63ee 694882d 7fa63ee 694882d e9633ca 694882d f8bd65e f7de418 ef46ff0 a0f34aa ef46ff0 a0f34aa 913a139 a0f34aa f7de418 f8bd65e 9ff561f f8bd65e 9f81a69 a0f34aa f8bd65e ef46ff0 913a139 f8bd65e 7049daf 913a139 d6247a0 a0f34aa 7fa63ee 7049daf 7fa63ee 7049daf f8bd65e a0f34aa e27f5f8 a0f34aa e27f5f8 7fa63ee f8bd65e 2d5961d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs
import numpy as np
import io
from pydub import AudioSegment
import openai
import time
import base64
def create_client(api_key):
return openai.OpenAI(
base_url="https://llama3-1-8b.lepton.run/api/v1/",
api_key=api_key
)
def update_or_append_conversation(conversation, id, role, content):
# Find if there's an existing message with the given id
for message in conversation:
if message.get("id") == id and message.get("role") == role:
message["content"] = content
return
# If not found, append a new message
conversation.append({"id": id, "role": role, "content": content})
def generate_response_and_audio(audio_bytes: bytes, lepton_conversation: list[str], client: OpenAI, output_format: str):
if client is None:
raise gr.Error("Please enter a valid API key first.")
bitrate = 128 if output_format == "mp3" else 32 # Higher bitrate for MP3, lower for OPUS
audio_data = base64.b64encode(audio_bytes).decode()
try:
stream = state.client.chat.completions.create(
extra_body={
"require_audio": True,
"tts_preset_id": "jessica",
"tts_audio_format": format_,
"tts_audio_bitrate": bitrate
},
model="llama3.1-8b",
messages=lepton_conversation + [{"role": "user", "content": [{"type": "audio", "data": audio_data}]}],
temperature=0.7,
max_tokens=256,
stream=True,
)
id = str(time.time())
full_response = ""
asr_result = ""
for chunk in stream:
if not chunk.choices:
continue
delta = chunk.choices[0].delta
content = delta.get("content", "")
audio = getattr(chunk.choices[0], "audio", [])
asr_results = getattr(chunk.choices[0], "asr_results", [])
if asr_results:
asr_result += "".join(asr_results)
yield id, None, asr_result, None
if content:
full_response += content
yield id, full_response, None, None
if audio:
# Accumulate audio bytes and yield them
audio_bytes_accumulated = b''.join([base64.b64decode(a) for a in audio])
audio = AudioSegment.from_file(io.BytesIO(audio_bytes_accumulated))
audio_array = np.array(audio.get_array_of_samples(), dtype=np.int16).reshape(1, -1)
print("audio.shape", audio_array.shape)
print("sampling_rate", audio.frame_rate)
yield id, None, None, (audio.frame_rate, audio_array)
yield id, full_response, asr_result, None
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def response(audio: tuple[int, np.ndarray], lepton_conversation: list[dict],
gradio_conversation: list[dict], client: OpenAI, output_format: str):
audio_buffer = io.BytesIO()
segment = AudioSegment(
audio[1].tobytes(),
frame_rate=audio[0],
sample_width=audio[1].dtype.itemsize,
channels=1,
)
segment.export(audio_buffer, format="wav")
generator = generate_response_and_audio(audio_buffer.getvalue(), state)
for id, text, asr, audio in generator:
if asr:
update_or_append_conversation(lepton_conversation, id, "user", asr)
update_or_append_conversation(gradio_conversation, id, "user", asr)
if text:
update_or_append_conversation(lepton_conversation, id, "assistant", text)
update_or_append_conversation(gradio_conversation, id, "assistant", text)
if audio:
yield audio, AdditionalOutputs(lepton_conversation, gradio_conversation)
else:
yield AdditionalOutputs(lepton_conversation, gradio_conversation)
with gr.Blocks() as demo:
with gr.Row():
api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key")
set_key_button = gr.Button("Set API Key")
api_key_status = gr.Textbox(label="API Key Status", interactive=False)
with gr.Row():
format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format")
with gr.Row():
with gr.Column():
input_audio = gr.Audio(label="Input Audio", sources="microphone", type="numpy")
with gr.Column():
chatbot = gr.Chatbot(label="Conversation", type="messages")
output_audio = gr.Audio(label="Output Audio", autoplay=True)
state = gr.State(AppState())
set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state])
format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state])
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.25, # Reduced to make it more responsive
time_limit=60, # Increased to allow for longer messages
)
stream.then(
maybe_call_response,
inputs=[state],
outputs=[chatbot, output_audio, state],
)
# Automatically restart recording after the assistant's response
restart = output_audio.change(
start_recording_user,
[state],
[input_audio]
)
# Add a "Stop Conversation" button
cancel = gr.Button("Stop Conversation", variant="stop")
cancel.click(lambda: (AppState(stopped=True), gr.update(recording=False)), None,
[state, input_audio], cancels=[stream, restart])
demo.launch()
|