import gradio as gr import numpy as np import io from pydub import AudioSegment import tempfile import os import base64 import openai from dataclasses import dataclass, field from threading import Lock @dataclass class AppState: conversation: list = field(default_factory=list) lock: Lock = field(default_factory=Lock) client: openai.OpenAI = None def create_client(api_key): return openai.OpenAI( base_url="https://llama3-1-8b.lepton.run/api/v1/", api_key=api_key ) def transcribe_audio(audio): # This is a placeholder function. In a real-world scenario, you'd use a # speech-to-text service here. For now, we'll just return a dummy transcript. return "This is a dummy transcript. Please implement actual speech-to-text functionality." def generate_response_and_audio(message, state): if state.client is None: raise gr.Error("Please enter a valid API key first.") with state.lock: state.conversation.append({"role": "user", "content": message}) try: completion = state.client.chat.completions.create( model="llama3-1-8b", messages=state.conversation, max_tokens=128, stream=True, extra_body={ "require_audio": "true", "tts_preset_id": "jessica", } ) full_response = "" audio_chunks = [] for chunk in completion: if not chunk.choices: continue content = chunk.choices[0].delta.content audio = getattr(chunk.choices[0], 'audio', []) if content: full_response += content yield full_response, None, state if audio: audio_chunks.extend(audio) audio_data = b''.join([base64.b64decode(a) for a in audio_chunks]) yield full_response, audio_data, state state.conversation.append({"role": "assistant", "content": full_response}) except Exception as e: raise gr.Error(f"Error generating response: {str(e)}") def chat(message, state): if not message: return "", None, state return generate_response_and_audio(message, state) def process_audio(audio, state): if audio is None: return "", state # Convert numpy array to wav audio_segment = AudioSegment( audio[1].tobytes(), frame_rate=audio[0], sample_width=audio[1].dtype.itemsize, channels=1 if len(audio[1].shape) == 1 else audio[1].shape[1] ) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio: audio_segment.export(temp_audio.name, format="wav") transcript = transcribe_audio(temp_audio.name) os.unlink(temp_audio.name) return transcript, state def set_api_key(api_key, state): if not api_key: raise gr.Error("Please enter a valid API key.") state.client = create_client(api_key) return "API key set successfully!", state with gr.Blocks() as demo: state = gr.State(AppState()) with gr.Row(): api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key") set_key_button = gr.Button("Set API Key") api_key_status = gr.Textbox(label="API Key Status", interactive=False) with gr.Row(): with gr.Column(scale=1): audio_input = gr.Audio(source="microphone", type="numpy") with gr.Column(scale=2): chatbot = gr.Chatbot() text_input = gr.Textbox(show_label=False, placeholder="Type your message here...") with gr.Column(scale=1): audio_output = gr.Audio(label="Generated Audio") set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state]) audio_input.change(process_audio, inputs=[audio_input, state], outputs=[text_input, state]) text_input.submit(chat, inputs=[text_input, state], outputs=[chatbot, audio_output, state]) demo.launch()