import gradio as gr import numpy as np import io from pydub import AudioSegment import tempfile import openai import time from dataclasses import dataclass, field from threading import Lock import base64 @dataclass class AppState: stream: np.ndarray | None = None sampling_rate: int = 0 pause_detected: bool = False conversation: list = field(default_factory=list) client: openai.OpenAI = None output_format: str = "mp3" stopped: bool = False # Global lock for thread safety state_lock = Lock() def create_client(api_key): return openai.OpenAI( base_url="https://llama3-1-8b.lepton.run/api/v1/", api_key=api_key ) def determine_pause(audio, sampling_rate, state): # Take the last 1 second of audio pause_length = int(sampling_rate * 1) # 1 second if len(audio) < pause_length: return False last_audio = audio[-pause_length:] amplitude = np.abs(last_audio) # Calculate the average amplitude in the last 1 second avg_amplitude = np.mean(amplitude) silence_threshold = 0.01 # Adjust this threshold as needed if avg_amplitude < silence_threshold: return True else: return False def process_audio(audio: tuple, state: AppState): if state.stream is None: state.stream = audio[1] state.sampling_rate = audio[0] else: state.stream = np.concatenate((state.stream, audio[1])) pause_detected = determine_pause(state.stream, state.sampling_rate, state) state.pause_detected = pause_detected if state.pause_detected: # Stop recording and trigger response return gr.update(recording=False), state, True else: return None, state, False def update_or_append_conversation(conversation, id, role, content): # Find if there's an existing message with the given id for message in conversation: if message.get("id") == id and message.get("role") == role: message["content"] = content return # If not found, append a new message conversation.append({"id": id, "role": role, "content": content}) def generate_response_and_audio(audio_bytes: bytes, state: AppState): if state.client is None: raise gr.Error("Please enter a valid API key first.") format_ = state.output_format bitrate = 128 if format_ == "mp3" else 32 # Higher bitrate for MP3, lower for OPUS audio_data = base64.b64encode(audio_bytes).decode() try: stream = state.client.chat.completions.create( extra_body={ "require_audio": True, "tts_preset_id": "jessica", "tts_audio_format": format_, "tts_audio_bitrate": bitrate }, model="llama3.1-8b", messages=state.conversation + [{"role": "user", "content": [{"type": "audio", "data": audio_data}]}], temperature=0.7, max_tokens=256, stream=True, ) id = str(time.time()) full_response = "" asr_result = "" audio_bytes_accumulated = b'' for chunk in stream: if not chunk.choices: continue delta = chunk.choices[0].delta content = delta.get("content", "") audio = getattr(chunk.choices[0], "audio", []) asr_results = getattr(chunk.choices[0], "asr_results", []) if asr_results: asr_result += "".join(asr_results) yield id, None, asr_result, None, state if content: full_response += content yield id, full_response, None, None, state if audio: # Accumulate audio bytes and yield them audio_bytes_accumulated += b''.join([base64.b64decode(a) for a in audio]) yield id, None, None, audio_bytes_accumulated, state yield id, full_response, asr_result, audio_bytes_accumulated, state except Exception as e: raise gr.Error(f"Error during audio streaming: {e}") def response(state: AppState): if state.stream is None or len(state.stream) == 0: yield None, None, state return audio_buffer = io.BytesIO() segment = AudioSegment( state.stream.tobytes(), frame_rate=state.sampling_rate, sample_width=state.stream.dtype.itemsize, channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]), ) segment.export(audio_buffer, format="wav") generator = generate_response_and_audio(audio_buffer.getvalue(), state) for id, text, asr, audio, updated_state in generator: state = updated_state if asr: update_or_append_conversation(state.conversation, id, "user", asr) if text: update_or_append_conversation(state.conversation, id, "assistant", text) chatbot_output = state.conversation yield chatbot_output, audio, state # Reset the audio stream for the next interaction state.stream = None state.pause_detected = False def start_recording_user(state: AppState): if not state.stopped: return gr.update(recording=True) else: return gr.update(recording=False) def set_api_key(api_key, state): if not api_key: raise gr.Error("Please enter a valid API key.") state.client = create_client(api_key) return "API key set successfully!", state def update_format(format, state): state.output_format = format return state with gr.Blocks() as demo: with gr.Row(): api_key_input = gr.Textbox(type="password", label="Enter your Lepton API Key") set_key_button = gr.Button("Set API Key") api_key_status = gr.Textbox(label="API Key Status", interactive=False) with gr.Row(): format_dropdown = gr.Dropdown(choices=["mp3", "opus"], value="mp3", label="Output Audio Format") with gr.Row(): with gr.Column(): input_audio = gr.Audio(label="Input Audio", source="microphone", type="numpy") with gr.Column(): chatbot = gr.Chatbot(label="Conversation", type="messages") output_audio = gr.Audio(label="Output Audio", autoplay=True) state = gr.State(AppState()) set_key_button.click(set_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state]) format_dropdown.change(update_format, inputs=[format_dropdown, state], outputs=[state]) # Add a dummy output to trigger the response function should_process_response = gr.Variable(False) stream = input_audio.stream( process_audio, [input_audio, state], [input_audio, state, should_process_response], stream_every=0.25, # Reduced to make it more responsive time_limit=60, # Increased to allow for longer messages ) # When should_process_response is True, call response stream.then( response, inputs=[state], outputs=[chatbot, output_audio, state] ) # Automatically restart recording after the assistant's response restart = output_audio.change( start_recording_user, [state], [input_audio] ) # Add a "Stop Conversation" button cancel = gr.Button("Stop Conversation", variant="stop") cancel.click(lambda: (AppState(stopped=True), gr.update(recording=False)), None, [state, input_audio], cancels=[stream, restart]) demo.launch(queue=True)