freddyaboulton's picture
commit
c681468
import gradio as gr
from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs
import numpy as np
import os
from twilio.rest import Client
import base64
import openai
import re
from huggingface_hub import InferenceClient
from pydub import AudioSegment
import io
from dotenv import load_dotenv
load_dotenv()
hf_client = InferenceClient()
spinner_html = open("spinner.html").read()
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
if account_sid and auth_token:
client = Client(account_sid, auth_token)
token = client.tokens.create()
rtc_configuration = {
"iceServers": token.ice_servers,
"iceTransportPolicy": "relay",
}
else:
rtc_configuration = None
client = openai.OpenAI(
api_key=os.environ.get("SAMBANOVA_API_KEY"),
base_url="https://api.sambanova.ai/v1",
)
system_prompt = "You are an AI coding assistant. Your task is to write single-file HTML applications based on a user's request. Only return the necessary code. Include all necessary imports and styles. You may also be asked to edit your original response."
user_prompt = "Please write a single-file HTML application to fulfill the following request.\nThe message:{user_message}\nCurrent code you have written:{code}"
def extract_html_content(text):
"""
Extract content including HTML tags.
"""
match = re.search(r'<!DOCTYPE html>.*?</html>', text, re.DOTALL)
return match.group(0) if match else None
def audio_to_bytes(audio: tuple[int, np.ndarray]):
audio_segment = AudioSegment(
audio[1].squeeze().tobytes(),
frame_rate=audio[0],
sample_width=audio[1].dtype.itemsize,
channels=1
)
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
# Get the MP3 bytes
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
return mp3_bytes
def display_in_sandbox(code):
encoded_html = base64.b64encode(code.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
return f"<iframe src=\"{data_uri}\" width=\"100%\" height=\"600px\"></iframe>"
def generate(user_message: tuple[int, np.ndarray],
history: list[dict],
code: str):
yield AdditionalOutputs(history, spinner_html)
text = hf_client.automatic_speech_recognition(audio_to_bytes(user_message)).text
user_msg_formatted = user_prompt.format(user_message=text, code=code)
history.append({"role": "user", "content": user_msg_formatted})
response = client.chat.completions.create(
model='Meta-Llama-3.1-70B-Instruct',
messages=history,
temperature = 0.1,
top_p = 0.1
)
output = response.choices[0].message.content
html_code = extract_html_content(output)
history.append({"role": "assistant", "content": output})
yield AdditionalOutputs(history, html_code)
with gr.Blocks(css=".code-component {max-height: 500px !important}") as demo:
history = gr.State([{"role": "system", "content": system_prompt}])
with gr.Row():
with gr.Column(scale=1):
gr.HTML(
"""
<h1 style='text-align: center'>
Llama Code Editor
</h1>
<h2 style='text-align: center'>
Powered by SambaNova and Gradio-WebRTC ⚡️
</h2>
<p style='text-align: center'>
Create and edit single-file HTML applications with just your voice!
</p>
<p style='text-align: center'>
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation.
</p>
"""
)
webrtc = WebRTC(rtc_configuration=rtc_configuration,
mode="send", modality="audio")
with gr.Column(scale=10):
with gr.Tabs():
with gr.Tab("Sandbox"):
sandbox = gr.HTML(value=open("sandbox.html").read())
with gr.Tab("Code"):
code = gr.Code(language="html", max_lines=50, interactive=False, elem_classes="code-component")
with gr.Tab("Chat"):
cb = gr.Chatbot(type="messages")
webrtc.stream(ReplyOnPause(generate),
inputs=[webrtc, history, code],
outputs=[webrtc], time_limit=90,
concurrency_limit=10)
webrtc.on_additional_outputs(lambda history, code: (history, code, history),
outputs=[history, code, cb])
code.change(display_in_sandbox, code, sandbox, queue=False)
if __name__ == "__main__":
demo.launch()