Spaces:
Sleeping
Sleeping
File size: 10,363 Bytes
54011d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
import torch
from litgpt.generate.base import next_token_image_batch
import soundfile as sf
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str
from utils.snac_utils import get_snac, generate_audio_data
import clip
import inference
from tqdm import tqdm
from inference import OmniInference, load_model, load_audio, download_model
from inference import text_vocabsize, padded_text_vocabsize, get_text_stream
from PIL import Image
torch.set_printoptions(sci_mode=False)
_image = inference._image
_eoimage = inference._eoimage
_pad_t = inference._pad_t
_input_t = inference._input_t
_answer_t = inference._answer_t
_eot = inference._eot
_eoa = inference._eoa
_pad_a = inference._pad_a
_input_a = inference._input_a
_answer_a = inference._answer_a
def get_input_ids_ImageQA_ATBatch(mel, leng, whispermodel, device):
with torch.no_grad():
mel = mel.unsqueeze(0).to(device)
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
audio_len = audio_feature.size(0)
input_ids = []
input_ids_item = [[] for i in range(8)]
for i in range(7):
input_ids_item[i] = [layershift(_image,i)] + [layershift(_pad_a,i)] * 50 + [layershift(_eoimage,i)]
input_ids_item[i] += [layershift(_input_a,i)]+[layershift(_pad_a,i)]*(audio_len)+[layershift(_eoa,i)]
input_ids_item[i] += [layershift(_answer_a,i)]
input_ids_item[-1] = [_pad_t]* (52 + 2 + audio_len) + [_answer_t]
input_ids_item = [torch.tensor(item) for item in input_ids_item]
input_ids.append(input_ids_item)
input_ids_item = [[] for i in range(8)]
for i in range(7):
input_ids_item[i] = [layershift(_image,i)] + [layershift(_pad_a,i)] * 50 + [layershift(_eoimage,i)]
input_ids_item[i] += [layershift(_input_a,i)]+[layershift(_pad_a,i)]*(audio_len)+[layershift(_eoa,i)] + [layershift(_pad_a,i)]
input_ids_item[-1] = [_pad_t]* (52 + 2 + audio_len) + [_answer_t]
input_ids_item = [torch.tensor(item) for item in input_ids_item]
input_ids.append(input_ids_item)
stacked_inputids = [[] for _ in range(8)]
for i in range(2):
for j in range(8):
stacked_inputids[j].append(input_ids[i][j])
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids]
return torch.stack([audio_feature,audio_feature]), stacked_inputids
def load_clip_model(ckpt_dir, device):
clip_model_path = ckpt_dir + "/ViT-B-32.pt"
if not os.path.exists(clip_model_path):
clip_model_path = "ViT-B/32"
clipmodel, clippreprocess = clip.load(clip_model_path, device=device)
return clipmodel, clippreprocess
class OmniVisionInference(OmniInference):
def __init__(self, ckpt_dir='./checkpoint', device='cuda:0'):
self.device = device
if not os.path.exists(ckpt_dir):
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
download_model(ckpt_dir)
self.fabric, self.model, self.text_tokenizer, self.snacmodel, self.whispermodel = load_model(ckpt_dir, device)
self.clipmodel, self.clippreprocess = load_clip_model(ckpt_dir, device)
def warm_up(self,
audio_sample='./data/samples/vision_qa_audio.wav',
image_sample='./data/samples/vision_qa_image.jpg'
):
for _ in self.run_vision_AA_batch_stream(audio_sample, image_sample,
save_path="./data/samples/vision_qa_output.wav",
warm_up=True):
pass
@torch.inference_mode()
def run_vision_AA_batch_stream(self, audio_path, image_path,
stream_stride=4,
max_returned_tokens=2048,
temperature=0.9,
top_k=1,
top_p=1.0,
eos_id_a=_eoa,
eos_id_t=_eot,
pad_id=_pad_t,
save_path=None,
warm_up=False
):
with self.fabric.init_tensor():
self.model.set_kv_cache(batch_size=2)
model = self.model
mel, leng = load_audio(audio_path)
img = Image.open(image_path)
audio_feature, input_ids = get_input_ids_ImageQA_ATBatch(mel, leng, self.whispermodel, self.device)
ima = self.clippreprocess(img).unsqueeze(0).to(self.device)
ima_feature = self.clipmodel.encode_image(ima).squeeze(0).to(self.device)
ima_feature = torch.stack([ima_feature.clone(),ima_feature.clone()]).to(self.device)
leng = [leng,leng]
task = ['ImageQA_A','ImageQA_AT']
T = input_ids[0].size(1)
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}"
if model.max_seq_length < max_returned_tokens - 1:
raise NotImplementedError(
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
)
list_output = [[] for i in range(8)]
tokens_A , token_T = next_token_image_batch(
model,
audio_feature.to(torch.float32).to(self.device),
ima_feature.to(torch.float32).to(self.device) ,
input_ids ,
whisper_lens = leng ,
task = task,
input_pos = torch.arange(0, T, device=self.device),
temperature=temperature,
top_k=top_k,
top_p=top_p
)
for i in range(7): list_output[i].append(tokens_A[i].tolist()[0])
list_output[7].append(token_T.tolist()[0])
text_end = False
index = 1
nums_generate = stream_stride
begin_generate = False
current_index = 0
input_pos = torch.tensor([T], device=self.device)
model_input_ids = [[] for i in range(8)]
for i in range(7):
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize+ i * 4160
model_input_ids[i].append(tokens_A[i].clone().to(self.device).to(torch.int32))
model_input_ids[i].append(torch.tensor([layershift(4097,i)],device=self.device))
model_input_ids[i] = torch.stack(model_input_ids[i])
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1] = torch.stack(model_input_ids[-1])
text_index = 0
is_text_end = False
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
tokens_A , token_T = next_token_image_batch(model, None , None ,
input_ids = model_input_ids,
whisper_lens= None,
task = None,
input_pos = input_pos,
temperature=temperature,
top_k=top_k,
top_p=top_p)
if text_end:
token_T = torch.tensor([_pad_t], device=self.device)
if tokens_A[-1] == eos_id_a:
break
if token_T == eos_id_t:
text_end = True
for i in range(7): list_output[i].append(tokens_A[i].tolist()[0])
list_output[7].append(token_T.tolist()[0])
if index == 7:
begin_generate = True
if begin_generate:
current_index += 1
if current_index == nums_generate:
current_index = 0
snac = get_snac(list_output,index,nums_generate)
audio_stream = generate_audio_data(snac, self.snacmodel, self.device)
if is_text_end:
text_stream = ""
else:
text_stream, text_index, is_text_end = get_text_stream(list_output, text_index, self.text_tokenizer)
yield (audio_stream, text_stream)
if warm_up:
break
input_pos = input_pos.add_(1)
model_input_ids = [[] for i in range(8)]
for i in range(7):
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize+ i * 4160
model_input_ids[i].append(tokens_A[i].clone().to(self.device).to(torch.int32))
model_input_ids[i].append(torch.tensor([layershift(4097,i)],device=self.device))
model_input_ids[i] = torch.stack(model_input_ids[i])
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1] = torch.stack(model_input_ids[-1])
index += 1
text_tokens = list_output[-1]
if text_vocabsize in text_tokens:
text_tokens = text_tokens[:text_tokens.index(text_vocabsize)]
res_text = self.text_tokenizer.decode(torch.tensor(text_tokens))
print(f"text output: {res_text}")
if save_path is not None:
audiolist = reconscruct_snac(list_output)
audio = reconstruct_tensors(audiolist)
with torch.inference_mode():
audio_hat = self.snacmodel.decode(audio)
sf.write(save_path, audio_hat.squeeze().cpu().numpy(), 24000)
model.clear_kv_cache()
def test_vision_infer():
client = OmniVisionInference()
client.warm_up()
input_audio_path = './data/samples/vision_qa_audio.wav'
input_image_path = './data/samples/vision_qa_image.jpg'
res_text = ""
for audio_stream, text_stream in client.run_vision_AA_batch_stream(
input_audio_path,
input_image_path,
save_path="./vision_qa_output.wav"
):
res_text += text_stream
print(f"text_output: {res_text}")
if __name__ == "__main__":
test_vision_infer()
|