Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ba2960a
1
Parent(s):
38d5570
code
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- README.md +2 -2
- app.py +14 -25
- requirements.txt +1 -0
- run.ipynb +0 -1
- run.py +0 -115
- video_example.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
video_example.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
README.md
CHANGED
@@ -5,8 +5,8 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version: 5.0
|
9 |
-
app_file:
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
12 |
---
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 5.1.0
|
9 |
+
app_file: app.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
12 |
---
|
app.py
CHANGED
@@ -5,7 +5,7 @@ from PIL import Image
|
|
5 |
import torch
|
6 |
import time
|
7 |
import numpy as np
|
8 |
-
import
|
9 |
|
10 |
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
|
11 |
|
@@ -21,21 +21,6 @@ SUBSAMPLE = 2
|
|
21 |
def stream_object_detection(video, conf_threshold):
|
22 |
cap = cv2.VideoCapture(video)
|
23 |
|
24 |
-
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
|
25 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
26 |
-
|
27 |
-
desired_fps = fps // SUBSAMPLE
|
28 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
|
29 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
|
30 |
-
|
31 |
-
iterating, frame = cap.read()
|
32 |
-
|
33 |
-
n_frames = 0
|
34 |
-
|
35 |
-
name = f"output_{uuid.uuid4()}.mp4"
|
36 |
-
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
37 |
-
batch = []
|
38 |
-
|
39 |
while iterating:
|
40 |
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
|
41 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
@@ -62,15 +47,11 @@ def stream_object_detection(video, conf_threshold):
|
|
62 |
frame = np.array(pil_image)
|
63 |
# Convert RGB to BGR
|
64 |
frame = frame[:, :, ::-1].copy()
|
65 |
-
|
66 |
|
67 |
batch = []
|
68 |
-
segment_file.release()
|
69 |
-
yield name
|
70 |
end = time.time()
|
71 |
print("time taken for processing boxes", end - start)
|
72 |
-
name = f"output_{uuid.uuid4()}.mp4"
|
73 |
-
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
74 |
|
75 |
iterating, frame = cap.read()
|
76 |
n_frames += 1
|
@@ -80,7 +61,7 @@ with gr.Blocks() as app:
|
|
80 |
gr.HTML(
|
81 |
"""
|
82 |
<h1 style='text-align: center'>
|
83 |
-
Video Object Detection with RT-DETR
|
84 |
</h1>
|
85 |
""")
|
86 |
gr.HTML(
|
@@ -100,13 +81,21 @@ with gr.Blocks() as app:
|
|
100 |
value=0.30,
|
101 |
)
|
102 |
with gr.Column():
|
103 |
-
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
fn=stream_object_detection,
|
107 |
inputs=[video, conf_threshold],
|
108 |
-
outputs=[
|
|
|
109 |
)
|
110 |
|
|
|
|
|
|
|
111 |
if __name__ == '__main__':
|
112 |
app.launch()
|
|
|
5 |
import torch
|
6 |
import time
|
7 |
import numpy as np
|
8 |
+
from gradio_webrtc import WebRTC
|
9 |
|
10 |
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
|
11 |
|
|
|
21 |
def stream_object_detection(video, conf_threshold):
|
22 |
cap = cv2.VideoCapture(video)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
while iterating:
|
25 |
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
|
26 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
47 |
frame = np.array(pil_image)
|
48 |
# Convert RGB to BGR
|
49 |
frame = frame[:, :, ::-1].copy()
|
50 |
+
yield frame
|
51 |
|
52 |
batch = []
|
|
|
|
|
53 |
end = time.time()
|
54 |
print("time taken for processing boxes", end - start)
|
|
|
|
|
55 |
|
56 |
iterating, frame = cap.read()
|
57 |
n_frames += 1
|
|
|
61 |
gr.HTML(
|
62 |
"""
|
63 |
<h1 style='text-align: center'>
|
64 |
+
Video Object Detection with RT-DETR (Powered by WebRTC ⚡️)
|
65 |
</h1>
|
66 |
""")
|
67 |
gr.HTML(
|
|
|
81 |
value=0.30,
|
82 |
)
|
83 |
with gr.Column():
|
84 |
+
output = WebRTC(label="WebRTC Stream",
|
85 |
+
rtc_configuration=None,
|
86 |
+
mode="receive",
|
87 |
+
modality="video")
|
88 |
+
detect = gr.Button("Detect", variant="primary")
|
89 |
|
90 |
+
output.stream(
|
91 |
fn=stream_object_detection,
|
92 |
inputs=[video, conf_threshold],
|
93 |
+
outputs=[output],
|
94 |
+
trigger=detect.click
|
95 |
)
|
96 |
|
97 |
+
gr.Examples(examples=["video_example.mp4"],
|
98 |
+
inputs=[video])
|
99 |
+
|
100 |
if __name__ == '__main__':
|
101 |
app.launch()
|
requirements.txt
CHANGED
@@ -3,3 +3,4 @@ opencv-python
|
|
3 |
torch
|
4 |
transformers>=4.43.0
|
5 |
Pillow
|
|
|
|
3 |
torch
|
4 |
transformers>=4.43.0
|
5 |
Pillow
|
6 |
+
gradio-webrtc
|
run.ipynb
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: rt-detr-object-detection"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio safetensors==0.4.3 opencv-python torch transformers>=4.43.0 Pillow "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/rt-detr-object-detection/draw_boxes.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import spaces\n", "import gradio as gr\n", "import cv2\n", "from PIL import Image\n", "import torch\n", "import time\n", "import numpy as np\n", "import uuid\n", "\n", "from transformers import RTDetrForObjectDetection, RTDetrImageProcessor # type: ignore\n", "\n", "from draw_boxes import draw_bounding_boxes\n", "\n", "image_processor = RTDetrImageProcessor.from_pretrained(\"PekingU/rtdetr_r50vd\")\n", "model = RTDetrForObjectDetection.from_pretrained(\"PekingU/rtdetr_r50vd\").to(\"cuda\")\n", "\n", "\n", "SUBSAMPLE = 2\n", "\n", "\n", "@spaces.GPU\n", "def stream_object_detection(video, conf_threshold):\n", " cap = cv2.VideoCapture(video)\n", "\n", " video_codec = cv2.VideoWriter_fourcc(*\"mp4v\") # type: ignore\n", " fps = int(cap.get(cv2.CAP_PROP_FPS))\n", "\n", " desired_fps = fps // SUBSAMPLE\n", " width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2\n", " height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2\n", "\n", " iterating, frame = cap.read()\n", "\n", " n_frames = 0\n", "\n", " name = f\"output_{uuid.uuid4()}.mp4\"\n", " segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore\n", " batch = []\n", "\n", " while iterating:\n", " frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)\n", " frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n", " if n_frames % SUBSAMPLE == 0:\n", " batch.append(frame)\n", " if len(batch) == 2 * desired_fps:\n", " inputs = image_processor(images=batch, return_tensors=\"pt\").to(\"cuda\")\n", "\n", " print(f\"starting batch of size {len(batch)}\")\n", " start = time.time()\n", " with torch.no_grad():\n", " outputs = model(**inputs)\n", " end = time.time()\n", " print(\"time taken for inference\", end - start)\n", "\n", " start = time.time()\n", " boxes = image_processor.post_process_object_detection(\n", " outputs,\n", " target_sizes=torch.tensor([(height, width)] * len(batch)),\n", " threshold=conf_threshold,\n", " )\n", "\n", " for _, (array, box) in enumerate(zip(batch, boxes)):\n", " pil_image = draw_bounding_boxes(\n", " Image.fromarray(array), box, model, conf_threshold\n", " )\n", " frame = np.array(pil_image)\n", " # Convert RGB to BGR\n", " frame = frame[:, :, ::-1].copy()\n", " segment_file.write(frame)\n", "\n", " batch = []\n", " segment_file.release()\n", " yield name\n", " end = time.time()\n", " print(\"time taken for processing boxes\", end - start)\n", " name = f\"output_{uuid.uuid4()}.mp4\"\n", " segment_file = cv2.VideoWriter(\n", " name, video_codec, desired_fps, (width, height)\n", " ) # type: ignore\n", "\n", " iterating, frame = cap.read()\n", " n_frames += 1\n", "\n", "\n", "with gr.Blocks() as demo:\n", " gr.HTML(\n", " \"\"\"\n", " <h1 style='text-align: center'>\n", " Video Object Detection with <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>RT-DETR</a>\n", " </h1>\n", " \"\"\"\n", " )\n", " with gr.Row():\n", " with gr.Column():\n", " video = gr.Video(label=\"Video Source\")\n", " conf_threshold = gr.Slider(\n", " label=\"Confidence Threshold\",\n", " minimum=0.0,\n", " maximum=1.0,\n", " step=0.05,\n", " value=0.30,\n", " )\n", " with gr.Column():\n", " output_video = gr.Video(\n", " label=\"Processed Video\", streaming=True, autoplay=True\n", " )\n", "\n", " video.upload(\n", " fn=stream_object_detection,\n", " inputs=[video, conf_threshold],\n", " outputs=[output_video],\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
run.py
DELETED
@@ -1,115 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
import cv2
|
4 |
-
from PIL import Image
|
5 |
-
import torch
|
6 |
-
import time
|
7 |
-
import numpy as np
|
8 |
-
import uuid
|
9 |
-
|
10 |
-
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor # type: ignore
|
11 |
-
|
12 |
-
from draw_boxes import draw_bounding_boxes
|
13 |
-
|
14 |
-
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
15 |
-
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd").to("cuda")
|
16 |
-
|
17 |
-
|
18 |
-
SUBSAMPLE = 2
|
19 |
-
|
20 |
-
|
21 |
-
@spaces.GPU
|
22 |
-
def stream_object_detection(video, conf_threshold):
|
23 |
-
cap = cv2.VideoCapture(video)
|
24 |
-
|
25 |
-
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
|
26 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
27 |
-
|
28 |
-
desired_fps = fps // SUBSAMPLE
|
29 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) // 2
|
30 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) // 2
|
31 |
-
|
32 |
-
iterating, frame = cap.read()
|
33 |
-
|
34 |
-
n_frames = 0
|
35 |
-
|
36 |
-
name = f"output_{uuid.uuid4()}.mp4"
|
37 |
-
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
38 |
-
batch = []
|
39 |
-
|
40 |
-
while iterating:
|
41 |
-
frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)
|
42 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
43 |
-
if n_frames % SUBSAMPLE == 0:
|
44 |
-
batch.append(frame)
|
45 |
-
if len(batch) == 2 * desired_fps:
|
46 |
-
inputs = image_processor(images=batch, return_tensors="pt").to("cuda")
|
47 |
-
|
48 |
-
print(f"starting batch of size {len(batch)}")
|
49 |
-
start = time.time()
|
50 |
-
with torch.no_grad():
|
51 |
-
outputs = model(**inputs)
|
52 |
-
end = time.time()
|
53 |
-
print("time taken for inference", end - start)
|
54 |
-
|
55 |
-
start = time.time()
|
56 |
-
boxes = image_processor.post_process_object_detection(
|
57 |
-
outputs,
|
58 |
-
target_sizes=torch.tensor([(height, width)] * len(batch)),
|
59 |
-
threshold=conf_threshold,
|
60 |
-
)
|
61 |
-
|
62 |
-
for _, (array, box) in enumerate(zip(batch, boxes)):
|
63 |
-
pil_image = draw_bounding_boxes(
|
64 |
-
Image.fromarray(array), box, model, conf_threshold
|
65 |
-
)
|
66 |
-
frame = np.array(pil_image)
|
67 |
-
# Convert RGB to BGR
|
68 |
-
frame = frame[:, :, ::-1].copy()
|
69 |
-
segment_file.write(frame)
|
70 |
-
|
71 |
-
batch = []
|
72 |
-
segment_file.release()
|
73 |
-
yield name
|
74 |
-
end = time.time()
|
75 |
-
print("time taken for processing boxes", end - start)
|
76 |
-
name = f"output_{uuid.uuid4()}.mp4"
|
77 |
-
segment_file = cv2.VideoWriter(
|
78 |
-
name, video_codec, desired_fps, (width, height)
|
79 |
-
) # type: ignore
|
80 |
-
|
81 |
-
iterating, frame = cap.read()
|
82 |
-
n_frames += 1
|
83 |
-
|
84 |
-
|
85 |
-
with gr.Blocks() as demo:
|
86 |
-
gr.HTML(
|
87 |
-
"""
|
88 |
-
<h1 style='text-align: center'>
|
89 |
-
Video Object Detection with <a href='https://huggingface.co/PekingU/rtdetr_r101vd_coco_o365' target='_blank'>RT-DETR</a>
|
90 |
-
</h1>
|
91 |
-
"""
|
92 |
-
)
|
93 |
-
with gr.Row():
|
94 |
-
with gr.Column():
|
95 |
-
video = gr.Video(label="Video Source")
|
96 |
-
conf_threshold = gr.Slider(
|
97 |
-
label="Confidence Threshold",
|
98 |
-
minimum=0.0,
|
99 |
-
maximum=1.0,
|
100 |
-
step=0.05,
|
101 |
-
value=0.30,
|
102 |
-
)
|
103 |
-
with gr.Column():
|
104 |
-
output_video = gr.Video(
|
105 |
-
label="Processed Video", streaming=True, autoplay=True
|
106 |
-
)
|
107 |
-
|
108 |
-
video.upload(
|
109 |
-
fn=stream_object_detection,
|
110 |
-
inputs=[video, conf_threshold],
|
111 |
-
outputs=[output_video],
|
112 |
-
)
|
113 |
-
|
114 |
-
if __name__ == "__main__":
|
115 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
video_example.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58f4485e53ab6877244b23c73c74151475a7f3814b8832e32ca02562e37ea0a5
|
3 |
+
size 5373394
|