Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ccc35d4
1
Parent(s):
385e56e
push
Browse files
app.py
CHANGED
@@ -3,10 +3,23 @@ import gradio as gr
|
|
3 |
import cv2
|
4 |
import tempfile
|
5 |
from ultralytics import YOLOv10
|
|
|
6 |
|
7 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
8 |
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
@spaces.GPU
|
11 |
def yolov10_inference(image, conf_threshold):
|
12 |
|
@@ -17,6 +30,7 @@ def yolov10_inference(image, conf_threshold):
|
|
17 |
|
18 |
results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)
|
19 |
|
|
|
20 |
|
21 |
|
22 |
def app():
|
@@ -39,23 +53,24 @@ def app():
|
|
39 |
time_limit=30
|
40 |
)
|
41 |
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
with gradio_app:
|
45 |
gr.HTML(
|
46 |
"""
|
47 |
<h1 style='text-align: center'>
|
48 |
-
|
49 |
</h1>
|
50 |
""")
|
51 |
gr.HTML(
|
52 |
"""
|
53 |
<h3 style='text-align: center'>
|
54 |
-
<a href='https://arxiv.org/abs/
|
55 |
</h3>
|
56 |
""")
|
57 |
with gr.Row():
|
58 |
with gr.Column():
|
59 |
app()
|
60 |
if __name__ == '__main__':
|
61 |
-
|
|
|
3 |
import cv2
|
4 |
import tempfile
|
5 |
from ultralytics import YOLOv10
|
6 |
+
from PIL import Image, ImageDraw, ImageFont
|
7 |
|
8 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
9 |
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
10 |
|
11 |
+
def draw_bounding_boxes(image, results, model, threshold=0.3):
|
12 |
+
draw = ImageDraw.Draw(image)
|
13 |
+
for result in results:
|
14 |
+
for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
|
15 |
+
if score > threshold:
|
16 |
+
label = model.config.id2label[label_id.item()]
|
17 |
+
box = [round(i) for i in box.tolist()]
|
18 |
+
draw.rectangle(box, outline="red", width=3)
|
19 |
+
draw.text((box[0], box[1]), f"{label}: {score:.2f}", fill="red")
|
20 |
+
return image
|
21 |
+
|
22 |
+
|
23 |
@spaces.GPU
|
24 |
def yolov10_inference(image, conf_threshold):
|
25 |
|
|
|
30 |
|
31 |
results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)
|
32 |
|
33 |
+
return draw_bounding_boxes(image, results, model, threshold=conf_threshold)
|
34 |
|
35 |
|
36 |
def app():
|
|
|
53 |
time_limit=30
|
54 |
)
|
55 |
|
56 |
+
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
57 |
+
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
58 |
|
59 |
+
with gr.Blocks(css=css) as app:
|
|
|
60 |
gr.HTML(
|
61 |
"""
|
62 |
<h1 style='text-align: center'>
|
63 |
+
Near Real-Time Webcam Stream with RTDetr
|
64 |
</h1>
|
65 |
""")
|
66 |
gr.HTML(
|
67 |
"""
|
68 |
<h3 style='text-align: center'>
|
69 |
+
<a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
70 |
</h3>
|
71 |
""")
|
72 |
with gr.Row():
|
73 |
with gr.Column():
|
74 |
app()
|
75 |
if __name__ == '__main__':
|
76 |
+
app.launch()
|