Spaces:
Running
on
T4
Running
on
T4
Commit
•
8cfdd9d
1
Parent(s):
c530e94
fix
Browse files- MobileNetSSD_deploy.caffemodel +0 -3
- MobileNetSSD_deploy.prototxt.txt +0 -1912
- README.md +40 -9
- app.py +27 -72
- inference.py +146 -0
- requirements.txt +3 -2
- utils.py +237 -0
MobileNetSSD_deploy.caffemodel
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:761c86fbae3d8361dd454f7c740a964f62975ed32f4324b8b85994edec30f6af
|
3 |
-
size 23147564
|
|
|
|
|
|
|
|
MobileNetSSD_deploy.prototxt.txt
DELETED
@@ -1,1912 +0,0 @@
|
|
1 |
-
name: "MobileNet-SSD"
|
2 |
-
input: "data"
|
3 |
-
input_shape {
|
4 |
-
dim: 1
|
5 |
-
dim: 3
|
6 |
-
dim: 300
|
7 |
-
dim: 300
|
8 |
-
}
|
9 |
-
layer {
|
10 |
-
name: "conv0"
|
11 |
-
type: "Convolution"
|
12 |
-
bottom: "data"
|
13 |
-
top: "conv0"
|
14 |
-
param {
|
15 |
-
lr_mult: 1.0
|
16 |
-
decay_mult: 1.0
|
17 |
-
}
|
18 |
-
param {
|
19 |
-
lr_mult: 2.0
|
20 |
-
decay_mult: 0.0
|
21 |
-
}
|
22 |
-
convolution_param {
|
23 |
-
num_output: 32
|
24 |
-
pad: 1
|
25 |
-
kernel_size: 3
|
26 |
-
stride: 2
|
27 |
-
weight_filler {
|
28 |
-
type: "msra"
|
29 |
-
}
|
30 |
-
bias_filler {
|
31 |
-
type: "constant"
|
32 |
-
value: 0.0
|
33 |
-
}
|
34 |
-
}
|
35 |
-
}
|
36 |
-
layer {
|
37 |
-
name: "conv0/relu"
|
38 |
-
type: "ReLU"
|
39 |
-
bottom: "conv0"
|
40 |
-
top: "conv0"
|
41 |
-
}
|
42 |
-
layer {
|
43 |
-
name: "conv1/dw"
|
44 |
-
type: "Convolution"
|
45 |
-
bottom: "conv0"
|
46 |
-
top: "conv1/dw"
|
47 |
-
param {
|
48 |
-
lr_mult: 1.0
|
49 |
-
decay_mult: 1.0
|
50 |
-
}
|
51 |
-
param {
|
52 |
-
lr_mult: 2.0
|
53 |
-
decay_mult: 0.0
|
54 |
-
}
|
55 |
-
convolution_param {
|
56 |
-
num_output: 32
|
57 |
-
pad: 1
|
58 |
-
kernel_size: 3
|
59 |
-
group: 32
|
60 |
-
engine: CAFFE
|
61 |
-
weight_filler {
|
62 |
-
type: "msra"
|
63 |
-
}
|
64 |
-
bias_filler {
|
65 |
-
type: "constant"
|
66 |
-
value: 0.0
|
67 |
-
}
|
68 |
-
}
|
69 |
-
}
|
70 |
-
layer {
|
71 |
-
name: "conv1/dw/relu"
|
72 |
-
type: "ReLU"
|
73 |
-
bottom: "conv1/dw"
|
74 |
-
top: "conv1/dw"
|
75 |
-
}
|
76 |
-
layer {
|
77 |
-
name: "conv1"
|
78 |
-
type: "Convolution"
|
79 |
-
bottom: "conv1/dw"
|
80 |
-
top: "conv1"
|
81 |
-
param {
|
82 |
-
lr_mult: 1.0
|
83 |
-
decay_mult: 1.0
|
84 |
-
}
|
85 |
-
param {
|
86 |
-
lr_mult: 2.0
|
87 |
-
decay_mult: 0.0
|
88 |
-
}
|
89 |
-
convolution_param {
|
90 |
-
num_output: 64
|
91 |
-
kernel_size: 1
|
92 |
-
weight_filler {
|
93 |
-
type: "msra"
|
94 |
-
}
|
95 |
-
bias_filler {
|
96 |
-
type: "constant"
|
97 |
-
value: 0.0
|
98 |
-
}
|
99 |
-
}
|
100 |
-
}
|
101 |
-
layer {
|
102 |
-
name: "conv1/relu"
|
103 |
-
type: "ReLU"
|
104 |
-
bottom: "conv1"
|
105 |
-
top: "conv1"
|
106 |
-
}
|
107 |
-
layer {
|
108 |
-
name: "conv2/dw"
|
109 |
-
type: "Convolution"
|
110 |
-
bottom: "conv1"
|
111 |
-
top: "conv2/dw"
|
112 |
-
param {
|
113 |
-
lr_mult: 1.0
|
114 |
-
decay_mult: 1.0
|
115 |
-
}
|
116 |
-
param {
|
117 |
-
lr_mult: 2.0
|
118 |
-
decay_mult: 0.0
|
119 |
-
}
|
120 |
-
convolution_param {
|
121 |
-
num_output: 64
|
122 |
-
pad: 1
|
123 |
-
kernel_size: 3
|
124 |
-
stride: 2
|
125 |
-
group: 64
|
126 |
-
engine: CAFFE
|
127 |
-
weight_filler {
|
128 |
-
type: "msra"
|
129 |
-
}
|
130 |
-
bias_filler {
|
131 |
-
type: "constant"
|
132 |
-
value: 0.0
|
133 |
-
}
|
134 |
-
}
|
135 |
-
}
|
136 |
-
layer {
|
137 |
-
name: "conv2/dw/relu"
|
138 |
-
type: "ReLU"
|
139 |
-
bottom: "conv2/dw"
|
140 |
-
top: "conv2/dw"
|
141 |
-
}
|
142 |
-
layer {
|
143 |
-
name: "conv2"
|
144 |
-
type: "Convolution"
|
145 |
-
bottom: "conv2/dw"
|
146 |
-
top: "conv2"
|
147 |
-
param {
|
148 |
-
lr_mult: 1.0
|
149 |
-
decay_mult: 1.0
|
150 |
-
}
|
151 |
-
param {
|
152 |
-
lr_mult: 2.0
|
153 |
-
decay_mult: 0.0
|
154 |
-
}
|
155 |
-
convolution_param {
|
156 |
-
num_output: 128
|
157 |
-
kernel_size: 1
|
158 |
-
weight_filler {
|
159 |
-
type: "msra"
|
160 |
-
}
|
161 |
-
bias_filler {
|
162 |
-
type: "constant"
|
163 |
-
value: 0.0
|
164 |
-
}
|
165 |
-
}
|
166 |
-
}
|
167 |
-
layer {
|
168 |
-
name: "conv2/relu"
|
169 |
-
type: "ReLU"
|
170 |
-
bottom: "conv2"
|
171 |
-
top: "conv2"
|
172 |
-
}
|
173 |
-
layer {
|
174 |
-
name: "conv3/dw"
|
175 |
-
type: "Convolution"
|
176 |
-
bottom: "conv2"
|
177 |
-
top: "conv3/dw"
|
178 |
-
param {
|
179 |
-
lr_mult: 1.0
|
180 |
-
decay_mult: 1.0
|
181 |
-
}
|
182 |
-
param {
|
183 |
-
lr_mult: 2.0
|
184 |
-
decay_mult: 0.0
|
185 |
-
}
|
186 |
-
convolution_param {
|
187 |
-
num_output: 128
|
188 |
-
pad: 1
|
189 |
-
kernel_size: 3
|
190 |
-
group: 128
|
191 |
-
engine: CAFFE
|
192 |
-
weight_filler {
|
193 |
-
type: "msra"
|
194 |
-
}
|
195 |
-
bias_filler {
|
196 |
-
type: "constant"
|
197 |
-
value: 0.0
|
198 |
-
}
|
199 |
-
}
|
200 |
-
}
|
201 |
-
layer {
|
202 |
-
name: "conv3/dw/relu"
|
203 |
-
type: "ReLU"
|
204 |
-
bottom: "conv3/dw"
|
205 |
-
top: "conv3/dw"
|
206 |
-
}
|
207 |
-
layer {
|
208 |
-
name: "conv3"
|
209 |
-
type: "Convolution"
|
210 |
-
bottom: "conv3/dw"
|
211 |
-
top: "conv3"
|
212 |
-
param {
|
213 |
-
lr_mult: 1.0
|
214 |
-
decay_mult: 1.0
|
215 |
-
}
|
216 |
-
param {
|
217 |
-
lr_mult: 2.0
|
218 |
-
decay_mult: 0.0
|
219 |
-
}
|
220 |
-
convolution_param {
|
221 |
-
num_output: 128
|
222 |
-
kernel_size: 1
|
223 |
-
weight_filler {
|
224 |
-
type: "msra"
|
225 |
-
}
|
226 |
-
bias_filler {
|
227 |
-
type: "constant"
|
228 |
-
value: 0.0
|
229 |
-
}
|
230 |
-
}
|
231 |
-
}
|
232 |
-
layer {
|
233 |
-
name: "conv3/relu"
|
234 |
-
type: "ReLU"
|
235 |
-
bottom: "conv3"
|
236 |
-
top: "conv3"
|
237 |
-
}
|
238 |
-
layer {
|
239 |
-
name: "conv4/dw"
|
240 |
-
type: "Convolution"
|
241 |
-
bottom: "conv3"
|
242 |
-
top: "conv4/dw"
|
243 |
-
param {
|
244 |
-
lr_mult: 1.0
|
245 |
-
decay_mult: 1.0
|
246 |
-
}
|
247 |
-
param {
|
248 |
-
lr_mult: 2.0
|
249 |
-
decay_mult: 0.0
|
250 |
-
}
|
251 |
-
convolution_param {
|
252 |
-
num_output: 128
|
253 |
-
pad: 1
|
254 |
-
kernel_size: 3
|
255 |
-
stride: 2
|
256 |
-
group: 128
|
257 |
-
engine: CAFFE
|
258 |
-
weight_filler {
|
259 |
-
type: "msra"
|
260 |
-
}
|
261 |
-
bias_filler {
|
262 |
-
type: "constant"
|
263 |
-
value: 0.0
|
264 |
-
}
|
265 |
-
}
|
266 |
-
}
|
267 |
-
layer {
|
268 |
-
name: "conv4/dw/relu"
|
269 |
-
type: "ReLU"
|
270 |
-
bottom: "conv4/dw"
|
271 |
-
top: "conv4/dw"
|
272 |
-
}
|
273 |
-
layer {
|
274 |
-
name: "conv4"
|
275 |
-
type: "Convolution"
|
276 |
-
bottom: "conv4/dw"
|
277 |
-
top: "conv4"
|
278 |
-
param {
|
279 |
-
lr_mult: 1.0
|
280 |
-
decay_mult: 1.0
|
281 |
-
}
|
282 |
-
param {
|
283 |
-
lr_mult: 2.0
|
284 |
-
decay_mult: 0.0
|
285 |
-
}
|
286 |
-
convolution_param {
|
287 |
-
num_output: 256
|
288 |
-
kernel_size: 1
|
289 |
-
weight_filler {
|
290 |
-
type: "msra"
|
291 |
-
}
|
292 |
-
bias_filler {
|
293 |
-
type: "constant"
|
294 |
-
value: 0.0
|
295 |
-
}
|
296 |
-
}
|
297 |
-
}
|
298 |
-
layer {
|
299 |
-
name: "conv4/relu"
|
300 |
-
type: "ReLU"
|
301 |
-
bottom: "conv4"
|
302 |
-
top: "conv4"
|
303 |
-
}
|
304 |
-
layer {
|
305 |
-
name: "conv5/dw"
|
306 |
-
type: "Convolution"
|
307 |
-
bottom: "conv4"
|
308 |
-
top: "conv5/dw"
|
309 |
-
param {
|
310 |
-
lr_mult: 1.0
|
311 |
-
decay_mult: 1.0
|
312 |
-
}
|
313 |
-
param {
|
314 |
-
lr_mult: 2.0
|
315 |
-
decay_mult: 0.0
|
316 |
-
}
|
317 |
-
convolution_param {
|
318 |
-
num_output: 256
|
319 |
-
pad: 1
|
320 |
-
kernel_size: 3
|
321 |
-
group: 256
|
322 |
-
engine: CAFFE
|
323 |
-
weight_filler {
|
324 |
-
type: "msra"
|
325 |
-
}
|
326 |
-
bias_filler {
|
327 |
-
type: "constant"
|
328 |
-
value: 0.0
|
329 |
-
}
|
330 |
-
}
|
331 |
-
}
|
332 |
-
layer {
|
333 |
-
name: "conv5/dw/relu"
|
334 |
-
type: "ReLU"
|
335 |
-
bottom: "conv5/dw"
|
336 |
-
top: "conv5/dw"
|
337 |
-
}
|
338 |
-
layer {
|
339 |
-
name: "conv5"
|
340 |
-
type: "Convolution"
|
341 |
-
bottom: "conv5/dw"
|
342 |
-
top: "conv5"
|
343 |
-
param {
|
344 |
-
lr_mult: 1.0
|
345 |
-
decay_mult: 1.0
|
346 |
-
}
|
347 |
-
param {
|
348 |
-
lr_mult: 2.0
|
349 |
-
decay_mult: 0.0
|
350 |
-
}
|
351 |
-
convolution_param {
|
352 |
-
num_output: 256
|
353 |
-
kernel_size: 1
|
354 |
-
weight_filler {
|
355 |
-
type: "msra"
|
356 |
-
}
|
357 |
-
bias_filler {
|
358 |
-
type: "constant"
|
359 |
-
value: 0.0
|
360 |
-
}
|
361 |
-
}
|
362 |
-
}
|
363 |
-
layer {
|
364 |
-
name: "conv5/relu"
|
365 |
-
type: "ReLU"
|
366 |
-
bottom: "conv5"
|
367 |
-
top: "conv5"
|
368 |
-
}
|
369 |
-
layer {
|
370 |
-
name: "conv6/dw"
|
371 |
-
type: "Convolution"
|
372 |
-
bottom: "conv5"
|
373 |
-
top: "conv6/dw"
|
374 |
-
param {
|
375 |
-
lr_mult: 1.0
|
376 |
-
decay_mult: 1.0
|
377 |
-
}
|
378 |
-
param {
|
379 |
-
lr_mult: 2.0
|
380 |
-
decay_mult: 0.0
|
381 |
-
}
|
382 |
-
convolution_param {
|
383 |
-
num_output: 256
|
384 |
-
pad: 1
|
385 |
-
kernel_size: 3
|
386 |
-
stride: 2
|
387 |
-
group: 256
|
388 |
-
engine: CAFFE
|
389 |
-
weight_filler {
|
390 |
-
type: "msra"
|
391 |
-
}
|
392 |
-
bias_filler {
|
393 |
-
type: "constant"
|
394 |
-
value: 0.0
|
395 |
-
}
|
396 |
-
}
|
397 |
-
}
|
398 |
-
layer {
|
399 |
-
name: "conv6/dw/relu"
|
400 |
-
type: "ReLU"
|
401 |
-
bottom: "conv6/dw"
|
402 |
-
top: "conv6/dw"
|
403 |
-
}
|
404 |
-
layer {
|
405 |
-
name: "conv6"
|
406 |
-
type: "Convolution"
|
407 |
-
bottom: "conv6/dw"
|
408 |
-
top: "conv6"
|
409 |
-
param {
|
410 |
-
lr_mult: 1.0
|
411 |
-
decay_mult: 1.0
|
412 |
-
}
|
413 |
-
param {
|
414 |
-
lr_mult: 2.0
|
415 |
-
decay_mult: 0.0
|
416 |
-
}
|
417 |
-
convolution_param {
|
418 |
-
num_output: 512
|
419 |
-
kernel_size: 1
|
420 |
-
weight_filler {
|
421 |
-
type: "msra"
|
422 |
-
}
|
423 |
-
bias_filler {
|
424 |
-
type: "constant"
|
425 |
-
value: 0.0
|
426 |
-
}
|
427 |
-
}
|
428 |
-
}
|
429 |
-
layer {
|
430 |
-
name: "conv6/relu"
|
431 |
-
type: "ReLU"
|
432 |
-
bottom: "conv6"
|
433 |
-
top: "conv6"
|
434 |
-
}
|
435 |
-
layer {
|
436 |
-
name: "conv7/dw"
|
437 |
-
type: "Convolution"
|
438 |
-
bottom: "conv6"
|
439 |
-
top: "conv7/dw"
|
440 |
-
param {
|
441 |
-
lr_mult: 1.0
|
442 |
-
decay_mult: 1.0
|
443 |
-
}
|
444 |
-
param {
|
445 |
-
lr_mult: 2.0
|
446 |
-
decay_mult: 0.0
|
447 |
-
}
|
448 |
-
convolution_param {
|
449 |
-
num_output: 512
|
450 |
-
pad: 1
|
451 |
-
kernel_size: 3
|
452 |
-
group: 512
|
453 |
-
engine: CAFFE
|
454 |
-
weight_filler {
|
455 |
-
type: "msra"
|
456 |
-
}
|
457 |
-
bias_filler {
|
458 |
-
type: "constant"
|
459 |
-
value: 0.0
|
460 |
-
}
|
461 |
-
}
|
462 |
-
}
|
463 |
-
layer {
|
464 |
-
name: "conv7/dw/relu"
|
465 |
-
type: "ReLU"
|
466 |
-
bottom: "conv7/dw"
|
467 |
-
top: "conv7/dw"
|
468 |
-
}
|
469 |
-
layer {
|
470 |
-
name: "conv7"
|
471 |
-
type: "Convolution"
|
472 |
-
bottom: "conv7/dw"
|
473 |
-
top: "conv7"
|
474 |
-
param {
|
475 |
-
lr_mult: 1.0
|
476 |
-
decay_mult: 1.0
|
477 |
-
}
|
478 |
-
param {
|
479 |
-
lr_mult: 2.0
|
480 |
-
decay_mult: 0.0
|
481 |
-
}
|
482 |
-
convolution_param {
|
483 |
-
num_output: 512
|
484 |
-
kernel_size: 1
|
485 |
-
weight_filler {
|
486 |
-
type: "msra"
|
487 |
-
}
|
488 |
-
bias_filler {
|
489 |
-
type: "constant"
|
490 |
-
value: 0.0
|
491 |
-
}
|
492 |
-
}
|
493 |
-
}
|
494 |
-
layer {
|
495 |
-
name: "conv7/relu"
|
496 |
-
type: "ReLU"
|
497 |
-
bottom: "conv7"
|
498 |
-
top: "conv7"
|
499 |
-
}
|
500 |
-
layer {
|
501 |
-
name: "conv8/dw"
|
502 |
-
type: "Convolution"
|
503 |
-
bottom: "conv7"
|
504 |
-
top: "conv8/dw"
|
505 |
-
param {
|
506 |
-
lr_mult: 1.0
|
507 |
-
decay_mult: 1.0
|
508 |
-
}
|
509 |
-
param {
|
510 |
-
lr_mult: 2.0
|
511 |
-
decay_mult: 0.0
|
512 |
-
}
|
513 |
-
convolution_param {
|
514 |
-
num_output: 512
|
515 |
-
pad: 1
|
516 |
-
kernel_size: 3
|
517 |
-
group: 512
|
518 |
-
engine: CAFFE
|
519 |
-
weight_filler {
|
520 |
-
type: "msra"
|
521 |
-
}
|
522 |
-
bias_filler {
|
523 |
-
type: "constant"
|
524 |
-
value: 0.0
|
525 |
-
}
|
526 |
-
}
|
527 |
-
}
|
528 |
-
layer {
|
529 |
-
name: "conv8/dw/relu"
|
530 |
-
type: "ReLU"
|
531 |
-
bottom: "conv8/dw"
|
532 |
-
top: "conv8/dw"
|
533 |
-
}
|
534 |
-
layer {
|
535 |
-
name: "conv8"
|
536 |
-
type: "Convolution"
|
537 |
-
bottom: "conv8/dw"
|
538 |
-
top: "conv8"
|
539 |
-
param {
|
540 |
-
lr_mult: 1.0
|
541 |
-
decay_mult: 1.0
|
542 |
-
}
|
543 |
-
param {
|
544 |
-
lr_mult: 2.0
|
545 |
-
decay_mult: 0.0
|
546 |
-
}
|
547 |
-
convolution_param {
|
548 |
-
num_output: 512
|
549 |
-
kernel_size: 1
|
550 |
-
weight_filler {
|
551 |
-
type: "msra"
|
552 |
-
}
|
553 |
-
bias_filler {
|
554 |
-
type: "constant"
|
555 |
-
value: 0.0
|
556 |
-
}
|
557 |
-
}
|
558 |
-
}
|
559 |
-
layer {
|
560 |
-
name: "conv8/relu"
|
561 |
-
type: "ReLU"
|
562 |
-
bottom: "conv8"
|
563 |
-
top: "conv8"
|
564 |
-
}
|
565 |
-
layer {
|
566 |
-
name: "conv9/dw"
|
567 |
-
type: "Convolution"
|
568 |
-
bottom: "conv8"
|
569 |
-
top: "conv9/dw"
|
570 |
-
param {
|
571 |
-
lr_mult: 1.0
|
572 |
-
decay_mult: 1.0
|
573 |
-
}
|
574 |
-
param {
|
575 |
-
lr_mult: 2.0
|
576 |
-
decay_mult: 0.0
|
577 |
-
}
|
578 |
-
convolution_param {
|
579 |
-
num_output: 512
|
580 |
-
pad: 1
|
581 |
-
kernel_size: 3
|
582 |
-
group: 512
|
583 |
-
engine: CAFFE
|
584 |
-
weight_filler {
|
585 |
-
type: "msra"
|
586 |
-
}
|
587 |
-
bias_filler {
|
588 |
-
type: "constant"
|
589 |
-
value: 0.0
|
590 |
-
}
|
591 |
-
}
|
592 |
-
}
|
593 |
-
layer {
|
594 |
-
name: "conv9/dw/relu"
|
595 |
-
type: "ReLU"
|
596 |
-
bottom: "conv9/dw"
|
597 |
-
top: "conv9/dw"
|
598 |
-
}
|
599 |
-
layer {
|
600 |
-
name: "conv9"
|
601 |
-
type: "Convolution"
|
602 |
-
bottom: "conv9/dw"
|
603 |
-
top: "conv9"
|
604 |
-
param {
|
605 |
-
lr_mult: 1.0
|
606 |
-
decay_mult: 1.0
|
607 |
-
}
|
608 |
-
param {
|
609 |
-
lr_mult: 2.0
|
610 |
-
decay_mult: 0.0
|
611 |
-
}
|
612 |
-
convolution_param {
|
613 |
-
num_output: 512
|
614 |
-
kernel_size: 1
|
615 |
-
weight_filler {
|
616 |
-
type: "msra"
|
617 |
-
}
|
618 |
-
bias_filler {
|
619 |
-
type: "constant"
|
620 |
-
value: 0.0
|
621 |
-
}
|
622 |
-
}
|
623 |
-
}
|
624 |
-
layer {
|
625 |
-
name: "conv9/relu"
|
626 |
-
type: "ReLU"
|
627 |
-
bottom: "conv9"
|
628 |
-
top: "conv9"
|
629 |
-
}
|
630 |
-
layer {
|
631 |
-
name: "conv10/dw"
|
632 |
-
type: "Convolution"
|
633 |
-
bottom: "conv9"
|
634 |
-
top: "conv10/dw"
|
635 |
-
param {
|
636 |
-
lr_mult: 1.0
|
637 |
-
decay_mult: 1.0
|
638 |
-
}
|
639 |
-
param {
|
640 |
-
lr_mult: 2.0
|
641 |
-
decay_mult: 0.0
|
642 |
-
}
|
643 |
-
convolution_param {
|
644 |
-
num_output: 512
|
645 |
-
pad: 1
|
646 |
-
kernel_size: 3
|
647 |
-
group: 512
|
648 |
-
engine: CAFFE
|
649 |
-
weight_filler {
|
650 |
-
type: "msra"
|
651 |
-
}
|
652 |
-
bias_filler {
|
653 |
-
type: "constant"
|
654 |
-
value: 0.0
|
655 |
-
}
|
656 |
-
}
|
657 |
-
}
|
658 |
-
layer {
|
659 |
-
name: "conv10/dw/relu"
|
660 |
-
type: "ReLU"
|
661 |
-
bottom: "conv10/dw"
|
662 |
-
top: "conv10/dw"
|
663 |
-
}
|
664 |
-
layer {
|
665 |
-
name: "conv10"
|
666 |
-
type: "Convolution"
|
667 |
-
bottom: "conv10/dw"
|
668 |
-
top: "conv10"
|
669 |
-
param {
|
670 |
-
lr_mult: 1.0
|
671 |
-
decay_mult: 1.0
|
672 |
-
}
|
673 |
-
param {
|
674 |
-
lr_mult: 2.0
|
675 |
-
decay_mult: 0.0
|
676 |
-
}
|
677 |
-
convolution_param {
|
678 |
-
num_output: 512
|
679 |
-
kernel_size: 1
|
680 |
-
weight_filler {
|
681 |
-
type: "msra"
|
682 |
-
}
|
683 |
-
bias_filler {
|
684 |
-
type: "constant"
|
685 |
-
value: 0.0
|
686 |
-
}
|
687 |
-
}
|
688 |
-
}
|
689 |
-
layer {
|
690 |
-
name: "conv10/relu"
|
691 |
-
type: "ReLU"
|
692 |
-
bottom: "conv10"
|
693 |
-
top: "conv10"
|
694 |
-
}
|
695 |
-
layer {
|
696 |
-
name: "conv11/dw"
|
697 |
-
type: "Convolution"
|
698 |
-
bottom: "conv10"
|
699 |
-
top: "conv11/dw"
|
700 |
-
param {
|
701 |
-
lr_mult: 1.0
|
702 |
-
decay_mult: 1.0
|
703 |
-
}
|
704 |
-
param {
|
705 |
-
lr_mult: 2.0
|
706 |
-
decay_mult: 0.0
|
707 |
-
}
|
708 |
-
convolution_param {
|
709 |
-
num_output: 512
|
710 |
-
pad: 1
|
711 |
-
kernel_size: 3
|
712 |
-
group: 512
|
713 |
-
engine: CAFFE
|
714 |
-
weight_filler {
|
715 |
-
type: "msra"
|
716 |
-
}
|
717 |
-
bias_filler {
|
718 |
-
type: "constant"
|
719 |
-
value: 0.0
|
720 |
-
}
|
721 |
-
}
|
722 |
-
}
|
723 |
-
layer {
|
724 |
-
name: "conv11/dw/relu"
|
725 |
-
type: "ReLU"
|
726 |
-
bottom: "conv11/dw"
|
727 |
-
top: "conv11/dw"
|
728 |
-
}
|
729 |
-
layer {
|
730 |
-
name: "conv11"
|
731 |
-
type: "Convolution"
|
732 |
-
bottom: "conv11/dw"
|
733 |
-
top: "conv11"
|
734 |
-
param {
|
735 |
-
lr_mult: 1.0
|
736 |
-
decay_mult: 1.0
|
737 |
-
}
|
738 |
-
param {
|
739 |
-
lr_mult: 2.0
|
740 |
-
decay_mult: 0.0
|
741 |
-
}
|
742 |
-
convolution_param {
|
743 |
-
num_output: 512
|
744 |
-
kernel_size: 1
|
745 |
-
weight_filler {
|
746 |
-
type: "msra"
|
747 |
-
}
|
748 |
-
bias_filler {
|
749 |
-
type: "constant"
|
750 |
-
value: 0.0
|
751 |
-
}
|
752 |
-
}
|
753 |
-
}
|
754 |
-
layer {
|
755 |
-
name: "conv11/relu"
|
756 |
-
type: "ReLU"
|
757 |
-
bottom: "conv11"
|
758 |
-
top: "conv11"
|
759 |
-
}
|
760 |
-
layer {
|
761 |
-
name: "conv12/dw"
|
762 |
-
type: "Convolution"
|
763 |
-
bottom: "conv11"
|
764 |
-
top: "conv12/dw"
|
765 |
-
param {
|
766 |
-
lr_mult: 1.0
|
767 |
-
decay_mult: 1.0
|
768 |
-
}
|
769 |
-
param {
|
770 |
-
lr_mult: 2.0
|
771 |
-
decay_mult: 0.0
|
772 |
-
}
|
773 |
-
convolution_param {
|
774 |
-
num_output: 512
|
775 |
-
pad: 1
|
776 |
-
kernel_size: 3
|
777 |
-
stride: 2
|
778 |
-
group: 512
|
779 |
-
engine: CAFFE
|
780 |
-
weight_filler {
|
781 |
-
type: "msra"
|
782 |
-
}
|
783 |
-
bias_filler {
|
784 |
-
type: "constant"
|
785 |
-
value: 0.0
|
786 |
-
}
|
787 |
-
}
|
788 |
-
}
|
789 |
-
layer {
|
790 |
-
name: "conv12/dw/relu"
|
791 |
-
type: "ReLU"
|
792 |
-
bottom: "conv12/dw"
|
793 |
-
top: "conv12/dw"
|
794 |
-
}
|
795 |
-
layer {
|
796 |
-
name: "conv12"
|
797 |
-
type: "Convolution"
|
798 |
-
bottom: "conv12/dw"
|
799 |
-
top: "conv12"
|
800 |
-
param {
|
801 |
-
lr_mult: 1.0
|
802 |
-
decay_mult: 1.0
|
803 |
-
}
|
804 |
-
param {
|
805 |
-
lr_mult: 2.0
|
806 |
-
decay_mult: 0.0
|
807 |
-
}
|
808 |
-
convolution_param {
|
809 |
-
num_output: 1024
|
810 |
-
kernel_size: 1
|
811 |
-
weight_filler {
|
812 |
-
type: "msra"
|
813 |
-
}
|
814 |
-
bias_filler {
|
815 |
-
type: "constant"
|
816 |
-
value: 0.0
|
817 |
-
}
|
818 |
-
}
|
819 |
-
}
|
820 |
-
layer {
|
821 |
-
name: "conv12/relu"
|
822 |
-
type: "ReLU"
|
823 |
-
bottom: "conv12"
|
824 |
-
top: "conv12"
|
825 |
-
}
|
826 |
-
layer {
|
827 |
-
name: "conv13/dw"
|
828 |
-
type: "Convolution"
|
829 |
-
bottom: "conv12"
|
830 |
-
top: "conv13/dw"
|
831 |
-
param {
|
832 |
-
lr_mult: 1.0
|
833 |
-
decay_mult: 1.0
|
834 |
-
}
|
835 |
-
param {
|
836 |
-
lr_mult: 2.0
|
837 |
-
decay_mult: 0.0
|
838 |
-
}
|
839 |
-
convolution_param {
|
840 |
-
num_output: 1024
|
841 |
-
pad: 1
|
842 |
-
kernel_size: 3
|
843 |
-
group: 1024
|
844 |
-
engine: CAFFE
|
845 |
-
weight_filler {
|
846 |
-
type: "msra"
|
847 |
-
}
|
848 |
-
bias_filler {
|
849 |
-
type: "constant"
|
850 |
-
value: 0.0
|
851 |
-
}
|
852 |
-
}
|
853 |
-
}
|
854 |
-
layer {
|
855 |
-
name: "conv13/dw/relu"
|
856 |
-
type: "ReLU"
|
857 |
-
bottom: "conv13/dw"
|
858 |
-
top: "conv13/dw"
|
859 |
-
}
|
860 |
-
layer {
|
861 |
-
name: "conv13"
|
862 |
-
type: "Convolution"
|
863 |
-
bottom: "conv13/dw"
|
864 |
-
top: "conv13"
|
865 |
-
param {
|
866 |
-
lr_mult: 1.0
|
867 |
-
decay_mult: 1.0
|
868 |
-
}
|
869 |
-
param {
|
870 |
-
lr_mult: 2.0
|
871 |
-
decay_mult: 0.0
|
872 |
-
}
|
873 |
-
convolution_param {
|
874 |
-
num_output: 1024
|
875 |
-
kernel_size: 1
|
876 |
-
weight_filler {
|
877 |
-
type: "msra"
|
878 |
-
}
|
879 |
-
bias_filler {
|
880 |
-
type: "constant"
|
881 |
-
value: 0.0
|
882 |
-
}
|
883 |
-
}
|
884 |
-
}
|
885 |
-
layer {
|
886 |
-
name: "conv13/relu"
|
887 |
-
type: "ReLU"
|
888 |
-
bottom: "conv13"
|
889 |
-
top: "conv13"
|
890 |
-
}
|
891 |
-
layer {
|
892 |
-
name: "conv14_1"
|
893 |
-
type: "Convolution"
|
894 |
-
bottom: "conv13"
|
895 |
-
top: "conv14_1"
|
896 |
-
param {
|
897 |
-
lr_mult: 1.0
|
898 |
-
decay_mult: 1.0
|
899 |
-
}
|
900 |
-
param {
|
901 |
-
lr_mult: 2.0
|
902 |
-
decay_mult: 0.0
|
903 |
-
}
|
904 |
-
convolution_param {
|
905 |
-
num_output: 256
|
906 |
-
kernel_size: 1
|
907 |
-
weight_filler {
|
908 |
-
type: "msra"
|
909 |
-
}
|
910 |
-
bias_filler {
|
911 |
-
type: "constant"
|
912 |
-
value: 0.0
|
913 |
-
}
|
914 |
-
}
|
915 |
-
}
|
916 |
-
layer {
|
917 |
-
name: "conv14_1/relu"
|
918 |
-
type: "ReLU"
|
919 |
-
bottom: "conv14_1"
|
920 |
-
top: "conv14_1"
|
921 |
-
}
|
922 |
-
layer {
|
923 |
-
name: "conv14_2"
|
924 |
-
type: "Convolution"
|
925 |
-
bottom: "conv14_1"
|
926 |
-
top: "conv14_2"
|
927 |
-
param {
|
928 |
-
lr_mult: 1.0
|
929 |
-
decay_mult: 1.0
|
930 |
-
}
|
931 |
-
param {
|
932 |
-
lr_mult: 2.0
|
933 |
-
decay_mult: 0.0
|
934 |
-
}
|
935 |
-
convolution_param {
|
936 |
-
num_output: 512
|
937 |
-
pad: 1
|
938 |
-
kernel_size: 3
|
939 |
-
stride: 2
|
940 |
-
weight_filler {
|
941 |
-
type: "msra"
|
942 |
-
}
|
943 |
-
bias_filler {
|
944 |
-
type: "constant"
|
945 |
-
value: 0.0
|
946 |
-
}
|
947 |
-
}
|
948 |
-
}
|
949 |
-
layer {
|
950 |
-
name: "conv14_2/relu"
|
951 |
-
type: "ReLU"
|
952 |
-
bottom: "conv14_2"
|
953 |
-
top: "conv14_2"
|
954 |
-
}
|
955 |
-
layer {
|
956 |
-
name: "conv15_1"
|
957 |
-
type: "Convolution"
|
958 |
-
bottom: "conv14_2"
|
959 |
-
top: "conv15_1"
|
960 |
-
param {
|
961 |
-
lr_mult: 1.0
|
962 |
-
decay_mult: 1.0
|
963 |
-
}
|
964 |
-
param {
|
965 |
-
lr_mult: 2.0
|
966 |
-
decay_mult: 0.0
|
967 |
-
}
|
968 |
-
convolution_param {
|
969 |
-
num_output: 128
|
970 |
-
kernel_size: 1
|
971 |
-
weight_filler {
|
972 |
-
type: "msra"
|
973 |
-
}
|
974 |
-
bias_filler {
|
975 |
-
type: "constant"
|
976 |
-
value: 0.0
|
977 |
-
}
|
978 |
-
}
|
979 |
-
}
|
980 |
-
layer {
|
981 |
-
name: "conv15_1/relu"
|
982 |
-
type: "ReLU"
|
983 |
-
bottom: "conv15_1"
|
984 |
-
top: "conv15_1"
|
985 |
-
}
|
986 |
-
layer {
|
987 |
-
name: "conv15_2"
|
988 |
-
type: "Convolution"
|
989 |
-
bottom: "conv15_1"
|
990 |
-
top: "conv15_2"
|
991 |
-
param {
|
992 |
-
lr_mult: 1.0
|
993 |
-
decay_mult: 1.0
|
994 |
-
}
|
995 |
-
param {
|
996 |
-
lr_mult: 2.0
|
997 |
-
decay_mult: 0.0
|
998 |
-
}
|
999 |
-
convolution_param {
|
1000 |
-
num_output: 256
|
1001 |
-
pad: 1
|
1002 |
-
kernel_size: 3
|
1003 |
-
stride: 2
|
1004 |
-
weight_filler {
|
1005 |
-
type: "msra"
|
1006 |
-
}
|
1007 |
-
bias_filler {
|
1008 |
-
type: "constant"
|
1009 |
-
value: 0.0
|
1010 |
-
}
|
1011 |
-
}
|
1012 |
-
}
|
1013 |
-
layer {
|
1014 |
-
name: "conv15_2/relu"
|
1015 |
-
type: "ReLU"
|
1016 |
-
bottom: "conv15_2"
|
1017 |
-
top: "conv15_2"
|
1018 |
-
}
|
1019 |
-
layer {
|
1020 |
-
name: "conv16_1"
|
1021 |
-
type: "Convolution"
|
1022 |
-
bottom: "conv15_2"
|
1023 |
-
top: "conv16_1"
|
1024 |
-
param {
|
1025 |
-
lr_mult: 1.0
|
1026 |
-
decay_mult: 1.0
|
1027 |
-
}
|
1028 |
-
param {
|
1029 |
-
lr_mult: 2.0
|
1030 |
-
decay_mult: 0.0
|
1031 |
-
}
|
1032 |
-
convolution_param {
|
1033 |
-
num_output: 128
|
1034 |
-
kernel_size: 1
|
1035 |
-
weight_filler {
|
1036 |
-
type: "msra"
|
1037 |
-
}
|
1038 |
-
bias_filler {
|
1039 |
-
type: "constant"
|
1040 |
-
value: 0.0
|
1041 |
-
}
|
1042 |
-
}
|
1043 |
-
}
|
1044 |
-
layer {
|
1045 |
-
name: "conv16_1/relu"
|
1046 |
-
type: "ReLU"
|
1047 |
-
bottom: "conv16_1"
|
1048 |
-
top: "conv16_1"
|
1049 |
-
}
|
1050 |
-
layer {
|
1051 |
-
name: "conv16_2"
|
1052 |
-
type: "Convolution"
|
1053 |
-
bottom: "conv16_1"
|
1054 |
-
top: "conv16_2"
|
1055 |
-
param {
|
1056 |
-
lr_mult: 1.0
|
1057 |
-
decay_mult: 1.0
|
1058 |
-
}
|
1059 |
-
param {
|
1060 |
-
lr_mult: 2.0
|
1061 |
-
decay_mult: 0.0
|
1062 |
-
}
|
1063 |
-
convolution_param {
|
1064 |
-
num_output: 256
|
1065 |
-
pad: 1
|
1066 |
-
kernel_size: 3
|
1067 |
-
stride: 2
|
1068 |
-
weight_filler {
|
1069 |
-
type: "msra"
|
1070 |
-
}
|
1071 |
-
bias_filler {
|
1072 |
-
type: "constant"
|
1073 |
-
value: 0.0
|
1074 |
-
}
|
1075 |
-
}
|
1076 |
-
}
|
1077 |
-
layer {
|
1078 |
-
name: "conv16_2/relu"
|
1079 |
-
type: "ReLU"
|
1080 |
-
bottom: "conv16_2"
|
1081 |
-
top: "conv16_2"
|
1082 |
-
}
|
1083 |
-
layer {
|
1084 |
-
name: "conv17_1"
|
1085 |
-
type: "Convolution"
|
1086 |
-
bottom: "conv16_2"
|
1087 |
-
top: "conv17_1"
|
1088 |
-
param {
|
1089 |
-
lr_mult: 1.0
|
1090 |
-
decay_mult: 1.0
|
1091 |
-
}
|
1092 |
-
param {
|
1093 |
-
lr_mult: 2.0
|
1094 |
-
decay_mult: 0.0
|
1095 |
-
}
|
1096 |
-
convolution_param {
|
1097 |
-
num_output: 64
|
1098 |
-
kernel_size: 1
|
1099 |
-
weight_filler {
|
1100 |
-
type: "msra"
|
1101 |
-
}
|
1102 |
-
bias_filler {
|
1103 |
-
type: "constant"
|
1104 |
-
value: 0.0
|
1105 |
-
}
|
1106 |
-
}
|
1107 |
-
}
|
1108 |
-
layer {
|
1109 |
-
name: "conv17_1/relu"
|
1110 |
-
type: "ReLU"
|
1111 |
-
bottom: "conv17_1"
|
1112 |
-
top: "conv17_1"
|
1113 |
-
}
|
1114 |
-
layer {
|
1115 |
-
name: "conv17_2"
|
1116 |
-
type: "Convolution"
|
1117 |
-
bottom: "conv17_1"
|
1118 |
-
top: "conv17_2"
|
1119 |
-
param {
|
1120 |
-
lr_mult: 1.0
|
1121 |
-
decay_mult: 1.0
|
1122 |
-
}
|
1123 |
-
param {
|
1124 |
-
lr_mult: 2.0
|
1125 |
-
decay_mult: 0.0
|
1126 |
-
}
|
1127 |
-
convolution_param {
|
1128 |
-
num_output: 128
|
1129 |
-
pad: 1
|
1130 |
-
kernel_size: 3
|
1131 |
-
stride: 2
|
1132 |
-
weight_filler {
|
1133 |
-
type: "msra"
|
1134 |
-
}
|
1135 |
-
bias_filler {
|
1136 |
-
type: "constant"
|
1137 |
-
value: 0.0
|
1138 |
-
}
|
1139 |
-
}
|
1140 |
-
}
|
1141 |
-
layer {
|
1142 |
-
name: "conv17_2/relu"
|
1143 |
-
type: "ReLU"
|
1144 |
-
bottom: "conv17_2"
|
1145 |
-
top: "conv17_2"
|
1146 |
-
}
|
1147 |
-
layer {
|
1148 |
-
name: "conv11_mbox_loc"
|
1149 |
-
type: "Convolution"
|
1150 |
-
bottom: "conv11"
|
1151 |
-
top: "conv11_mbox_loc"
|
1152 |
-
param {
|
1153 |
-
lr_mult: 1.0
|
1154 |
-
decay_mult: 1.0
|
1155 |
-
}
|
1156 |
-
param {
|
1157 |
-
lr_mult: 2.0
|
1158 |
-
decay_mult: 0.0
|
1159 |
-
}
|
1160 |
-
convolution_param {
|
1161 |
-
num_output: 12
|
1162 |
-
kernel_size: 1
|
1163 |
-
weight_filler {
|
1164 |
-
type: "msra"
|
1165 |
-
}
|
1166 |
-
bias_filler {
|
1167 |
-
type: "constant"
|
1168 |
-
value: 0.0
|
1169 |
-
}
|
1170 |
-
}
|
1171 |
-
}
|
1172 |
-
layer {
|
1173 |
-
name: "conv11_mbox_loc_perm"
|
1174 |
-
type: "Permute"
|
1175 |
-
bottom: "conv11_mbox_loc"
|
1176 |
-
top: "conv11_mbox_loc_perm"
|
1177 |
-
permute_param {
|
1178 |
-
order: 0
|
1179 |
-
order: 2
|
1180 |
-
order: 3
|
1181 |
-
order: 1
|
1182 |
-
}
|
1183 |
-
}
|
1184 |
-
layer {
|
1185 |
-
name: "conv11_mbox_loc_flat"
|
1186 |
-
type: "Flatten"
|
1187 |
-
bottom: "conv11_mbox_loc_perm"
|
1188 |
-
top: "conv11_mbox_loc_flat"
|
1189 |
-
flatten_param {
|
1190 |
-
axis: 1
|
1191 |
-
}
|
1192 |
-
}
|
1193 |
-
layer {
|
1194 |
-
name: "conv11_mbox_conf"
|
1195 |
-
type: "Convolution"
|
1196 |
-
bottom: "conv11"
|
1197 |
-
top: "conv11_mbox_conf"
|
1198 |
-
param {
|
1199 |
-
lr_mult: 1.0
|
1200 |
-
decay_mult: 1.0
|
1201 |
-
}
|
1202 |
-
param {
|
1203 |
-
lr_mult: 2.0
|
1204 |
-
decay_mult: 0.0
|
1205 |
-
}
|
1206 |
-
convolution_param {
|
1207 |
-
num_output: 63
|
1208 |
-
kernel_size: 1
|
1209 |
-
weight_filler {
|
1210 |
-
type: "msra"
|
1211 |
-
}
|
1212 |
-
bias_filler {
|
1213 |
-
type: "constant"
|
1214 |
-
value: 0.0
|
1215 |
-
}
|
1216 |
-
}
|
1217 |
-
}
|
1218 |
-
layer {
|
1219 |
-
name: "conv11_mbox_conf_perm"
|
1220 |
-
type: "Permute"
|
1221 |
-
bottom: "conv11_mbox_conf"
|
1222 |
-
top: "conv11_mbox_conf_perm"
|
1223 |
-
permute_param {
|
1224 |
-
order: 0
|
1225 |
-
order: 2
|
1226 |
-
order: 3
|
1227 |
-
order: 1
|
1228 |
-
}
|
1229 |
-
}
|
1230 |
-
layer {
|
1231 |
-
name: "conv11_mbox_conf_flat"
|
1232 |
-
type: "Flatten"
|
1233 |
-
bottom: "conv11_mbox_conf_perm"
|
1234 |
-
top: "conv11_mbox_conf_flat"
|
1235 |
-
flatten_param {
|
1236 |
-
axis: 1
|
1237 |
-
}
|
1238 |
-
}
|
1239 |
-
layer {
|
1240 |
-
name: "conv11_mbox_priorbox"
|
1241 |
-
type: "PriorBox"
|
1242 |
-
bottom: "conv11"
|
1243 |
-
bottom: "data"
|
1244 |
-
top: "conv11_mbox_priorbox"
|
1245 |
-
prior_box_param {
|
1246 |
-
min_size: 60.0
|
1247 |
-
aspect_ratio: 2.0
|
1248 |
-
flip: true
|
1249 |
-
clip: false
|
1250 |
-
variance: 0.1
|
1251 |
-
variance: 0.1
|
1252 |
-
variance: 0.2
|
1253 |
-
variance: 0.2
|
1254 |
-
offset: 0.5
|
1255 |
-
}
|
1256 |
-
}
|
1257 |
-
layer {
|
1258 |
-
name: "conv13_mbox_loc"
|
1259 |
-
type: "Convolution"
|
1260 |
-
bottom: "conv13"
|
1261 |
-
top: "conv13_mbox_loc"
|
1262 |
-
param {
|
1263 |
-
lr_mult: 1.0
|
1264 |
-
decay_mult: 1.0
|
1265 |
-
}
|
1266 |
-
param {
|
1267 |
-
lr_mult: 2.0
|
1268 |
-
decay_mult: 0.0
|
1269 |
-
}
|
1270 |
-
convolution_param {
|
1271 |
-
num_output: 24
|
1272 |
-
kernel_size: 1
|
1273 |
-
weight_filler {
|
1274 |
-
type: "msra"
|
1275 |
-
}
|
1276 |
-
bias_filler {
|
1277 |
-
type: "constant"
|
1278 |
-
value: 0.0
|
1279 |
-
}
|
1280 |
-
}
|
1281 |
-
}
|
1282 |
-
layer {
|
1283 |
-
name: "conv13_mbox_loc_perm"
|
1284 |
-
type: "Permute"
|
1285 |
-
bottom: "conv13_mbox_loc"
|
1286 |
-
top: "conv13_mbox_loc_perm"
|
1287 |
-
permute_param {
|
1288 |
-
order: 0
|
1289 |
-
order: 2
|
1290 |
-
order: 3
|
1291 |
-
order: 1
|
1292 |
-
}
|
1293 |
-
}
|
1294 |
-
layer {
|
1295 |
-
name: "conv13_mbox_loc_flat"
|
1296 |
-
type: "Flatten"
|
1297 |
-
bottom: "conv13_mbox_loc_perm"
|
1298 |
-
top: "conv13_mbox_loc_flat"
|
1299 |
-
flatten_param {
|
1300 |
-
axis: 1
|
1301 |
-
}
|
1302 |
-
}
|
1303 |
-
layer {
|
1304 |
-
name: "conv13_mbox_conf"
|
1305 |
-
type: "Convolution"
|
1306 |
-
bottom: "conv13"
|
1307 |
-
top: "conv13_mbox_conf"
|
1308 |
-
param {
|
1309 |
-
lr_mult: 1.0
|
1310 |
-
decay_mult: 1.0
|
1311 |
-
}
|
1312 |
-
param {
|
1313 |
-
lr_mult: 2.0
|
1314 |
-
decay_mult: 0.0
|
1315 |
-
}
|
1316 |
-
convolution_param {
|
1317 |
-
num_output: 126
|
1318 |
-
kernel_size: 1
|
1319 |
-
weight_filler {
|
1320 |
-
type: "msra"
|
1321 |
-
}
|
1322 |
-
bias_filler {
|
1323 |
-
type: "constant"
|
1324 |
-
value: 0.0
|
1325 |
-
}
|
1326 |
-
}
|
1327 |
-
}
|
1328 |
-
layer {
|
1329 |
-
name: "conv13_mbox_conf_perm"
|
1330 |
-
type: "Permute"
|
1331 |
-
bottom: "conv13_mbox_conf"
|
1332 |
-
top: "conv13_mbox_conf_perm"
|
1333 |
-
permute_param {
|
1334 |
-
order: 0
|
1335 |
-
order: 2
|
1336 |
-
order: 3
|
1337 |
-
order: 1
|
1338 |
-
}
|
1339 |
-
}
|
1340 |
-
layer {
|
1341 |
-
name: "conv13_mbox_conf_flat"
|
1342 |
-
type: "Flatten"
|
1343 |
-
bottom: "conv13_mbox_conf_perm"
|
1344 |
-
top: "conv13_mbox_conf_flat"
|
1345 |
-
flatten_param {
|
1346 |
-
axis: 1
|
1347 |
-
}
|
1348 |
-
}
|
1349 |
-
layer {
|
1350 |
-
name: "conv13_mbox_priorbox"
|
1351 |
-
type: "PriorBox"
|
1352 |
-
bottom: "conv13"
|
1353 |
-
bottom: "data"
|
1354 |
-
top: "conv13_mbox_priorbox"
|
1355 |
-
prior_box_param {
|
1356 |
-
min_size: 105.0
|
1357 |
-
max_size: 150.0
|
1358 |
-
aspect_ratio: 2.0
|
1359 |
-
aspect_ratio: 3.0
|
1360 |
-
flip: true
|
1361 |
-
clip: false
|
1362 |
-
variance: 0.1
|
1363 |
-
variance: 0.1
|
1364 |
-
variance: 0.2
|
1365 |
-
variance: 0.2
|
1366 |
-
offset: 0.5
|
1367 |
-
}
|
1368 |
-
}
|
1369 |
-
layer {
|
1370 |
-
name: "conv14_2_mbox_loc"
|
1371 |
-
type: "Convolution"
|
1372 |
-
bottom: "conv14_2"
|
1373 |
-
top: "conv14_2_mbox_loc"
|
1374 |
-
param {
|
1375 |
-
lr_mult: 1.0
|
1376 |
-
decay_mult: 1.0
|
1377 |
-
}
|
1378 |
-
param {
|
1379 |
-
lr_mult: 2.0
|
1380 |
-
decay_mult: 0.0
|
1381 |
-
}
|
1382 |
-
convolution_param {
|
1383 |
-
num_output: 24
|
1384 |
-
kernel_size: 1
|
1385 |
-
weight_filler {
|
1386 |
-
type: "msra"
|
1387 |
-
}
|
1388 |
-
bias_filler {
|
1389 |
-
type: "constant"
|
1390 |
-
value: 0.0
|
1391 |
-
}
|
1392 |
-
}
|
1393 |
-
}
|
1394 |
-
layer {
|
1395 |
-
name: "conv14_2_mbox_loc_perm"
|
1396 |
-
type: "Permute"
|
1397 |
-
bottom: "conv14_2_mbox_loc"
|
1398 |
-
top: "conv14_2_mbox_loc_perm"
|
1399 |
-
permute_param {
|
1400 |
-
order: 0
|
1401 |
-
order: 2
|
1402 |
-
order: 3
|
1403 |
-
order: 1
|
1404 |
-
}
|
1405 |
-
}
|
1406 |
-
layer {
|
1407 |
-
name: "conv14_2_mbox_loc_flat"
|
1408 |
-
type: "Flatten"
|
1409 |
-
bottom: "conv14_2_mbox_loc_perm"
|
1410 |
-
top: "conv14_2_mbox_loc_flat"
|
1411 |
-
flatten_param {
|
1412 |
-
axis: 1
|
1413 |
-
}
|
1414 |
-
}
|
1415 |
-
layer {
|
1416 |
-
name: "conv14_2_mbox_conf"
|
1417 |
-
type: "Convolution"
|
1418 |
-
bottom: "conv14_2"
|
1419 |
-
top: "conv14_2_mbox_conf"
|
1420 |
-
param {
|
1421 |
-
lr_mult: 1.0
|
1422 |
-
decay_mult: 1.0
|
1423 |
-
}
|
1424 |
-
param {
|
1425 |
-
lr_mult: 2.0
|
1426 |
-
decay_mult: 0.0
|
1427 |
-
}
|
1428 |
-
convolution_param {
|
1429 |
-
num_output: 126
|
1430 |
-
kernel_size: 1
|
1431 |
-
weight_filler {
|
1432 |
-
type: "msra"
|
1433 |
-
}
|
1434 |
-
bias_filler {
|
1435 |
-
type: "constant"
|
1436 |
-
value: 0.0
|
1437 |
-
}
|
1438 |
-
}
|
1439 |
-
}
|
1440 |
-
layer {
|
1441 |
-
name: "conv14_2_mbox_conf_perm"
|
1442 |
-
type: "Permute"
|
1443 |
-
bottom: "conv14_2_mbox_conf"
|
1444 |
-
top: "conv14_2_mbox_conf_perm"
|
1445 |
-
permute_param {
|
1446 |
-
order: 0
|
1447 |
-
order: 2
|
1448 |
-
order: 3
|
1449 |
-
order: 1
|
1450 |
-
}
|
1451 |
-
}
|
1452 |
-
layer {
|
1453 |
-
name: "conv14_2_mbox_conf_flat"
|
1454 |
-
type: "Flatten"
|
1455 |
-
bottom: "conv14_2_mbox_conf_perm"
|
1456 |
-
top: "conv14_2_mbox_conf_flat"
|
1457 |
-
flatten_param {
|
1458 |
-
axis: 1
|
1459 |
-
}
|
1460 |
-
}
|
1461 |
-
layer {
|
1462 |
-
name: "conv14_2_mbox_priorbox"
|
1463 |
-
type: "PriorBox"
|
1464 |
-
bottom: "conv14_2"
|
1465 |
-
bottom: "data"
|
1466 |
-
top: "conv14_2_mbox_priorbox"
|
1467 |
-
prior_box_param {
|
1468 |
-
min_size: 150.0
|
1469 |
-
max_size: 195.0
|
1470 |
-
aspect_ratio: 2.0
|
1471 |
-
aspect_ratio: 3.0
|
1472 |
-
flip: true
|
1473 |
-
clip: false
|
1474 |
-
variance: 0.1
|
1475 |
-
variance: 0.1
|
1476 |
-
variance: 0.2
|
1477 |
-
variance: 0.2
|
1478 |
-
offset: 0.5
|
1479 |
-
}
|
1480 |
-
}
|
1481 |
-
layer {
|
1482 |
-
name: "conv15_2_mbox_loc"
|
1483 |
-
type: "Convolution"
|
1484 |
-
bottom: "conv15_2"
|
1485 |
-
top: "conv15_2_mbox_loc"
|
1486 |
-
param {
|
1487 |
-
lr_mult: 1.0
|
1488 |
-
decay_mult: 1.0
|
1489 |
-
}
|
1490 |
-
param {
|
1491 |
-
lr_mult: 2.0
|
1492 |
-
decay_mult: 0.0
|
1493 |
-
}
|
1494 |
-
convolution_param {
|
1495 |
-
num_output: 24
|
1496 |
-
kernel_size: 1
|
1497 |
-
weight_filler {
|
1498 |
-
type: "msra"
|
1499 |
-
}
|
1500 |
-
bias_filler {
|
1501 |
-
type: "constant"
|
1502 |
-
value: 0.0
|
1503 |
-
}
|
1504 |
-
}
|
1505 |
-
}
|
1506 |
-
layer {
|
1507 |
-
name: "conv15_2_mbox_loc_perm"
|
1508 |
-
type: "Permute"
|
1509 |
-
bottom: "conv15_2_mbox_loc"
|
1510 |
-
top: "conv15_2_mbox_loc_perm"
|
1511 |
-
permute_param {
|
1512 |
-
order: 0
|
1513 |
-
order: 2
|
1514 |
-
order: 3
|
1515 |
-
order: 1
|
1516 |
-
}
|
1517 |
-
}
|
1518 |
-
layer {
|
1519 |
-
name: "conv15_2_mbox_loc_flat"
|
1520 |
-
type: "Flatten"
|
1521 |
-
bottom: "conv15_2_mbox_loc_perm"
|
1522 |
-
top: "conv15_2_mbox_loc_flat"
|
1523 |
-
flatten_param {
|
1524 |
-
axis: 1
|
1525 |
-
}
|
1526 |
-
}
|
1527 |
-
layer {
|
1528 |
-
name: "conv15_2_mbox_conf"
|
1529 |
-
type: "Convolution"
|
1530 |
-
bottom: "conv15_2"
|
1531 |
-
top: "conv15_2_mbox_conf"
|
1532 |
-
param {
|
1533 |
-
lr_mult: 1.0
|
1534 |
-
decay_mult: 1.0
|
1535 |
-
}
|
1536 |
-
param {
|
1537 |
-
lr_mult: 2.0
|
1538 |
-
decay_mult: 0.0
|
1539 |
-
}
|
1540 |
-
convolution_param {
|
1541 |
-
num_output: 126
|
1542 |
-
kernel_size: 1
|
1543 |
-
weight_filler {
|
1544 |
-
type: "msra"
|
1545 |
-
}
|
1546 |
-
bias_filler {
|
1547 |
-
type: "constant"
|
1548 |
-
value: 0.0
|
1549 |
-
}
|
1550 |
-
}
|
1551 |
-
}
|
1552 |
-
layer {
|
1553 |
-
name: "conv15_2_mbox_conf_perm"
|
1554 |
-
type: "Permute"
|
1555 |
-
bottom: "conv15_2_mbox_conf"
|
1556 |
-
top: "conv15_2_mbox_conf_perm"
|
1557 |
-
permute_param {
|
1558 |
-
order: 0
|
1559 |
-
order: 2
|
1560 |
-
order: 3
|
1561 |
-
order: 1
|
1562 |
-
}
|
1563 |
-
}
|
1564 |
-
layer {
|
1565 |
-
name: "conv15_2_mbox_conf_flat"
|
1566 |
-
type: "Flatten"
|
1567 |
-
bottom: "conv15_2_mbox_conf_perm"
|
1568 |
-
top: "conv15_2_mbox_conf_flat"
|
1569 |
-
flatten_param {
|
1570 |
-
axis: 1
|
1571 |
-
}
|
1572 |
-
}
|
1573 |
-
layer {
|
1574 |
-
name: "conv15_2_mbox_priorbox"
|
1575 |
-
type: "PriorBox"
|
1576 |
-
bottom: "conv15_2"
|
1577 |
-
bottom: "data"
|
1578 |
-
top: "conv15_2_mbox_priorbox"
|
1579 |
-
prior_box_param {
|
1580 |
-
min_size: 195.0
|
1581 |
-
max_size: 240.0
|
1582 |
-
aspect_ratio: 2.0
|
1583 |
-
aspect_ratio: 3.0
|
1584 |
-
flip: true
|
1585 |
-
clip: false
|
1586 |
-
variance: 0.1
|
1587 |
-
variance: 0.1
|
1588 |
-
variance: 0.2
|
1589 |
-
variance: 0.2
|
1590 |
-
offset: 0.5
|
1591 |
-
}
|
1592 |
-
}
|
1593 |
-
layer {
|
1594 |
-
name: "conv16_2_mbox_loc"
|
1595 |
-
type: "Convolution"
|
1596 |
-
bottom: "conv16_2"
|
1597 |
-
top: "conv16_2_mbox_loc"
|
1598 |
-
param {
|
1599 |
-
lr_mult: 1.0
|
1600 |
-
decay_mult: 1.0
|
1601 |
-
}
|
1602 |
-
param {
|
1603 |
-
lr_mult: 2.0
|
1604 |
-
decay_mult: 0.0
|
1605 |
-
}
|
1606 |
-
convolution_param {
|
1607 |
-
num_output: 24
|
1608 |
-
kernel_size: 1
|
1609 |
-
weight_filler {
|
1610 |
-
type: "msra"
|
1611 |
-
}
|
1612 |
-
bias_filler {
|
1613 |
-
type: "constant"
|
1614 |
-
value: 0.0
|
1615 |
-
}
|
1616 |
-
}
|
1617 |
-
}
|
1618 |
-
layer {
|
1619 |
-
name: "conv16_2_mbox_loc_perm"
|
1620 |
-
type: "Permute"
|
1621 |
-
bottom: "conv16_2_mbox_loc"
|
1622 |
-
top: "conv16_2_mbox_loc_perm"
|
1623 |
-
permute_param {
|
1624 |
-
order: 0
|
1625 |
-
order: 2
|
1626 |
-
order: 3
|
1627 |
-
order: 1
|
1628 |
-
}
|
1629 |
-
}
|
1630 |
-
layer {
|
1631 |
-
name: "conv16_2_mbox_loc_flat"
|
1632 |
-
type: "Flatten"
|
1633 |
-
bottom: "conv16_2_mbox_loc_perm"
|
1634 |
-
top: "conv16_2_mbox_loc_flat"
|
1635 |
-
flatten_param {
|
1636 |
-
axis: 1
|
1637 |
-
}
|
1638 |
-
}
|
1639 |
-
layer {
|
1640 |
-
name: "conv16_2_mbox_conf"
|
1641 |
-
type: "Convolution"
|
1642 |
-
bottom: "conv16_2"
|
1643 |
-
top: "conv16_2_mbox_conf"
|
1644 |
-
param {
|
1645 |
-
lr_mult: 1.0
|
1646 |
-
decay_mult: 1.0
|
1647 |
-
}
|
1648 |
-
param {
|
1649 |
-
lr_mult: 2.0
|
1650 |
-
decay_mult: 0.0
|
1651 |
-
}
|
1652 |
-
convolution_param {
|
1653 |
-
num_output: 126
|
1654 |
-
kernel_size: 1
|
1655 |
-
weight_filler {
|
1656 |
-
type: "msra"
|
1657 |
-
}
|
1658 |
-
bias_filler {
|
1659 |
-
type: "constant"
|
1660 |
-
value: 0.0
|
1661 |
-
}
|
1662 |
-
}
|
1663 |
-
}
|
1664 |
-
layer {
|
1665 |
-
name: "conv16_2_mbox_conf_perm"
|
1666 |
-
type: "Permute"
|
1667 |
-
bottom: "conv16_2_mbox_conf"
|
1668 |
-
top: "conv16_2_mbox_conf_perm"
|
1669 |
-
permute_param {
|
1670 |
-
order: 0
|
1671 |
-
order: 2
|
1672 |
-
order: 3
|
1673 |
-
order: 1
|
1674 |
-
}
|
1675 |
-
}
|
1676 |
-
layer {
|
1677 |
-
name: "conv16_2_mbox_conf_flat"
|
1678 |
-
type: "Flatten"
|
1679 |
-
bottom: "conv16_2_mbox_conf_perm"
|
1680 |
-
top: "conv16_2_mbox_conf_flat"
|
1681 |
-
flatten_param {
|
1682 |
-
axis: 1
|
1683 |
-
}
|
1684 |
-
}
|
1685 |
-
layer {
|
1686 |
-
name: "conv16_2_mbox_priorbox"
|
1687 |
-
type: "PriorBox"
|
1688 |
-
bottom: "conv16_2"
|
1689 |
-
bottom: "data"
|
1690 |
-
top: "conv16_2_mbox_priorbox"
|
1691 |
-
prior_box_param {
|
1692 |
-
min_size: 240.0
|
1693 |
-
max_size: 285.0
|
1694 |
-
aspect_ratio: 2.0
|
1695 |
-
aspect_ratio: 3.0
|
1696 |
-
flip: true
|
1697 |
-
clip: false
|
1698 |
-
variance: 0.1
|
1699 |
-
variance: 0.1
|
1700 |
-
variance: 0.2
|
1701 |
-
variance: 0.2
|
1702 |
-
offset: 0.5
|
1703 |
-
}
|
1704 |
-
}
|
1705 |
-
layer {
|
1706 |
-
name: "conv17_2_mbox_loc"
|
1707 |
-
type: "Convolution"
|
1708 |
-
bottom: "conv17_2"
|
1709 |
-
top: "conv17_2_mbox_loc"
|
1710 |
-
param {
|
1711 |
-
lr_mult: 1.0
|
1712 |
-
decay_mult: 1.0
|
1713 |
-
}
|
1714 |
-
param {
|
1715 |
-
lr_mult: 2.0
|
1716 |
-
decay_mult: 0.0
|
1717 |
-
}
|
1718 |
-
convolution_param {
|
1719 |
-
num_output: 24
|
1720 |
-
kernel_size: 1
|
1721 |
-
weight_filler {
|
1722 |
-
type: "msra"
|
1723 |
-
}
|
1724 |
-
bias_filler {
|
1725 |
-
type: "constant"
|
1726 |
-
value: 0.0
|
1727 |
-
}
|
1728 |
-
}
|
1729 |
-
}
|
1730 |
-
layer {
|
1731 |
-
name: "conv17_2_mbox_loc_perm"
|
1732 |
-
type: "Permute"
|
1733 |
-
bottom: "conv17_2_mbox_loc"
|
1734 |
-
top: "conv17_2_mbox_loc_perm"
|
1735 |
-
permute_param {
|
1736 |
-
order: 0
|
1737 |
-
order: 2
|
1738 |
-
order: 3
|
1739 |
-
order: 1
|
1740 |
-
}
|
1741 |
-
}
|
1742 |
-
layer {
|
1743 |
-
name: "conv17_2_mbox_loc_flat"
|
1744 |
-
type: "Flatten"
|
1745 |
-
bottom: "conv17_2_mbox_loc_perm"
|
1746 |
-
top: "conv17_2_mbox_loc_flat"
|
1747 |
-
flatten_param {
|
1748 |
-
axis: 1
|
1749 |
-
}
|
1750 |
-
}
|
1751 |
-
layer {
|
1752 |
-
name: "conv17_2_mbox_conf"
|
1753 |
-
type: "Convolution"
|
1754 |
-
bottom: "conv17_2"
|
1755 |
-
top: "conv17_2_mbox_conf"
|
1756 |
-
param {
|
1757 |
-
lr_mult: 1.0
|
1758 |
-
decay_mult: 1.0
|
1759 |
-
}
|
1760 |
-
param {
|
1761 |
-
lr_mult: 2.0
|
1762 |
-
decay_mult: 0.0
|
1763 |
-
}
|
1764 |
-
convolution_param {
|
1765 |
-
num_output: 126
|
1766 |
-
kernel_size: 1
|
1767 |
-
weight_filler {
|
1768 |
-
type: "msra"
|
1769 |
-
}
|
1770 |
-
bias_filler {
|
1771 |
-
type: "constant"
|
1772 |
-
value: 0.0
|
1773 |
-
}
|
1774 |
-
}
|
1775 |
-
}
|
1776 |
-
layer {
|
1777 |
-
name: "conv17_2_mbox_conf_perm"
|
1778 |
-
type: "Permute"
|
1779 |
-
bottom: "conv17_2_mbox_conf"
|
1780 |
-
top: "conv17_2_mbox_conf_perm"
|
1781 |
-
permute_param {
|
1782 |
-
order: 0
|
1783 |
-
order: 2
|
1784 |
-
order: 3
|
1785 |
-
order: 1
|
1786 |
-
}
|
1787 |
-
}
|
1788 |
-
layer {
|
1789 |
-
name: "conv17_2_mbox_conf_flat"
|
1790 |
-
type: "Flatten"
|
1791 |
-
bottom: "conv17_2_mbox_conf_perm"
|
1792 |
-
top: "conv17_2_mbox_conf_flat"
|
1793 |
-
flatten_param {
|
1794 |
-
axis: 1
|
1795 |
-
}
|
1796 |
-
}
|
1797 |
-
layer {
|
1798 |
-
name: "conv17_2_mbox_priorbox"
|
1799 |
-
type: "PriorBox"
|
1800 |
-
bottom: "conv17_2"
|
1801 |
-
bottom: "data"
|
1802 |
-
top: "conv17_2_mbox_priorbox"
|
1803 |
-
prior_box_param {
|
1804 |
-
min_size: 285.0
|
1805 |
-
max_size: 300.0
|
1806 |
-
aspect_ratio: 2.0
|
1807 |
-
aspect_ratio: 3.0
|
1808 |
-
flip: true
|
1809 |
-
clip: false
|
1810 |
-
variance: 0.1
|
1811 |
-
variance: 0.1
|
1812 |
-
variance: 0.2
|
1813 |
-
variance: 0.2
|
1814 |
-
offset: 0.5
|
1815 |
-
}
|
1816 |
-
}
|
1817 |
-
layer {
|
1818 |
-
name: "mbox_loc"
|
1819 |
-
type: "Concat"
|
1820 |
-
bottom: "conv11_mbox_loc_flat"
|
1821 |
-
bottom: "conv13_mbox_loc_flat"
|
1822 |
-
bottom: "conv14_2_mbox_loc_flat"
|
1823 |
-
bottom: "conv15_2_mbox_loc_flat"
|
1824 |
-
bottom: "conv16_2_mbox_loc_flat"
|
1825 |
-
bottom: "conv17_2_mbox_loc_flat"
|
1826 |
-
top: "mbox_loc"
|
1827 |
-
concat_param {
|
1828 |
-
axis: 1
|
1829 |
-
}
|
1830 |
-
}
|
1831 |
-
layer {
|
1832 |
-
name: "mbox_conf"
|
1833 |
-
type: "Concat"
|
1834 |
-
bottom: "conv11_mbox_conf_flat"
|
1835 |
-
bottom: "conv13_mbox_conf_flat"
|
1836 |
-
bottom: "conv14_2_mbox_conf_flat"
|
1837 |
-
bottom: "conv15_2_mbox_conf_flat"
|
1838 |
-
bottom: "conv16_2_mbox_conf_flat"
|
1839 |
-
bottom: "conv17_2_mbox_conf_flat"
|
1840 |
-
top: "mbox_conf"
|
1841 |
-
concat_param {
|
1842 |
-
axis: 1
|
1843 |
-
}
|
1844 |
-
}
|
1845 |
-
layer {
|
1846 |
-
name: "mbox_priorbox"
|
1847 |
-
type: "Concat"
|
1848 |
-
bottom: "conv11_mbox_priorbox"
|
1849 |
-
bottom: "conv13_mbox_priorbox"
|
1850 |
-
bottom: "conv14_2_mbox_priorbox"
|
1851 |
-
bottom: "conv15_2_mbox_priorbox"
|
1852 |
-
bottom: "conv16_2_mbox_priorbox"
|
1853 |
-
bottom: "conv17_2_mbox_priorbox"
|
1854 |
-
top: "mbox_priorbox"
|
1855 |
-
concat_param {
|
1856 |
-
axis: 2
|
1857 |
-
}
|
1858 |
-
}
|
1859 |
-
layer {
|
1860 |
-
name: "mbox_conf_reshape"
|
1861 |
-
type: "Reshape"
|
1862 |
-
bottom: "mbox_conf"
|
1863 |
-
top: "mbox_conf_reshape"
|
1864 |
-
reshape_param {
|
1865 |
-
shape {
|
1866 |
-
dim: 0
|
1867 |
-
dim: -1
|
1868 |
-
dim: 21
|
1869 |
-
}
|
1870 |
-
}
|
1871 |
-
}
|
1872 |
-
layer {
|
1873 |
-
name: "mbox_conf_softmax"
|
1874 |
-
type: "Softmax"
|
1875 |
-
bottom: "mbox_conf_reshape"
|
1876 |
-
top: "mbox_conf_softmax"
|
1877 |
-
softmax_param {
|
1878 |
-
axis: 2
|
1879 |
-
}
|
1880 |
-
}
|
1881 |
-
layer {
|
1882 |
-
name: "mbox_conf_flatten"
|
1883 |
-
type: "Flatten"
|
1884 |
-
bottom: "mbox_conf_softmax"
|
1885 |
-
top: "mbox_conf_flatten"
|
1886 |
-
flatten_param {
|
1887 |
-
axis: 1
|
1888 |
-
}
|
1889 |
-
}
|
1890 |
-
layer {
|
1891 |
-
name: "detection_out"
|
1892 |
-
type: "DetectionOutput"
|
1893 |
-
bottom: "mbox_loc"
|
1894 |
-
bottom: "mbox_conf_flatten"
|
1895 |
-
bottom: "mbox_priorbox"
|
1896 |
-
top: "detection_out"
|
1897 |
-
include {
|
1898 |
-
phase: TEST
|
1899 |
-
}
|
1900 |
-
detection_output_param {
|
1901 |
-
num_classes: 21
|
1902 |
-
share_location: true
|
1903 |
-
background_label_id: 0
|
1904 |
-
nms_param {
|
1905 |
-
nms_threshold: 0.45
|
1906 |
-
top_k: 100
|
1907 |
-
}
|
1908 |
-
code_type: CENTER_SIZE
|
1909 |
-
keep_top_k: 100
|
1910 |
-
confidence_threshold: 0.25
|
1911 |
-
}
|
1912 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,13 +1,44 @@
|
|
1 |
---
|
2 |
-
title: Webrtc
|
3 |
-
emoji: 📈
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: gray
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.0.0b3
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- object-detection
|
5 |
+
- computer-vision
|
6 |
+
- yolov10
|
7 |
+
datasets:
|
8 |
+
- detection-datasets/coco
|
9 |
+
sdk: gradio
|
10 |
+
sdk_version: 5.0.0b1
|
11 |
---
|
12 |
|
13 |
+
### Model Description
|
14 |
+
[YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458v1)
|
15 |
+
|
16 |
+
- arXiv: https://arxiv.org/abs/2405.14458v1
|
17 |
+
- github: https://github.com/THU-MIG/yolov10
|
18 |
+
|
19 |
+
### Installation
|
20 |
+
```
|
21 |
+
pip install supervision git+https://github.com/THU-MIG/yolov10.git
|
22 |
+
```
|
23 |
+
|
24 |
+
### Yolov10 Inference
|
25 |
+
```python
|
26 |
+
from ultralytics import YOLOv10
|
27 |
+
import supervision as sv
|
28 |
+
import cv2
|
29 |
+
|
30 |
+
IMAGE_PATH = 'dog.jpeg'
|
31 |
+
|
32 |
+
model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
|
33 |
+
model.predict(IMAGE_PATH, show=True)
|
34 |
+
```
|
35 |
+
|
36 |
+
### BibTeX Entry and Citation Info
|
37 |
+
```
|
38 |
+
@article{wang2024yolov10,
|
39 |
+
title={YOLOv10: Real-Time End-to-End Object Detection},
|
40 |
+
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
|
41 |
+
journal={arXiv preprint arXiv:2405.14458},
|
42 |
+
year={2024}
|
43 |
+
}
|
44 |
+
```
|
app.py
CHANGED
@@ -1,10 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
-
|
4 |
from gradio_webrtc import WebRTC
|
5 |
-
from pathlib import Path
|
6 |
from twilio.rest import Client
|
7 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
10 |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
@@ -17,72 +23,16 @@ rtc_configuration = {
|
|
17 |
"iceTransportPolicy": "relay",
|
18 |
}
|
19 |
|
20 |
-
|
21 |
-
"background",
|
22 |
-
"aeroplane",
|
23 |
-
"bicycle",
|
24 |
-
"bird",
|
25 |
-
"boat",
|
26 |
-
"bottle",
|
27 |
-
"bus",
|
28 |
-
"car",
|
29 |
-
"cat",
|
30 |
-
"chair",
|
31 |
-
"cow",
|
32 |
-
"diningtable",
|
33 |
-
"dog",
|
34 |
-
"horse",
|
35 |
-
"motorbike",
|
36 |
-
"person",
|
37 |
-
"pottedplant",
|
38 |
-
"sheep",
|
39 |
-
"sofa",
|
40 |
-
"train",
|
41 |
-
"tvmonitor",
|
42 |
-
]
|
43 |
-
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
44 |
-
|
45 |
-
directory = Path(__file__).parent
|
46 |
-
|
47 |
-
MODEL = str((directory / "MobileNetSSD_deploy.caffemodel").resolve())
|
48 |
-
PROTOTXT = str((directory / "MobileNetSSD_deploy.prototxt.txt").resolve())
|
49 |
-
net = cv2.dnn.readNetFromCaffe(PROTOTXT, MODEL)
|
50 |
|
51 |
|
52 |
def detection(image, conf_threshold=0.3):
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
)
|
57 |
-
net.setInput(blob)
|
58 |
-
|
59 |
-
detections = net.forward()
|
60 |
-
image = cv2.resize(image, (500, 500))
|
61 |
-
(h, w) = image.shape[:2]
|
62 |
-
labels = []
|
63 |
-
for i in np.arange(0, detections.shape[2]):
|
64 |
-
confidence = detections[0, 0, i, 2]
|
65 |
-
|
66 |
-
if confidence > conf_threshold:
|
67 |
-
# extract the index of the class label from the `detections`,
|
68 |
-
# then compute the (x, y)-coordinates of the bounding box for
|
69 |
-
# the object
|
70 |
-
idx = int(detections[0, 0, i, 1])
|
71 |
-
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
72 |
-
(startX, startY, endX, endY) = box.astype("int")
|
73 |
-
|
74 |
-
# display the prediction
|
75 |
-
label = f"{CLASSES[idx]}: {round(confidence * 100, 2)}%"
|
76 |
-
labels.append(label)
|
77 |
-
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
|
78 |
-
y = startY - 15 if startY - 15 > 15 else startY + 15
|
79 |
-
cv2.putText(
|
80 |
-
image, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2
|
81 |
-
)
|
82 |
-
return image
|
83 |
|
84 |
|
85 |
-
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
86 |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
87 |
|
88 |
|
@@ -90,12 +40,20 @@ with gr.Blocks(css=css) as demo:
|
|
90 |
gr.HTML(
|
91 |
"""
|
92 |
<h1 style='text-align: center'>
|
93 |
-
|
94 |
</h1>
|
95 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
with gr.Column(elem_classes=["my-column"]):
|
97 |
with gr.Group(elem_classes=["my-group"]):
|
98 |
-
image = WebRTC(label="
|
99 |
conf_threshold = gr.Slider(
|
100 |
label="Confidence Threshold",
|
101 |
minimum=0.0,
|
@@ -103,13 +61,10 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
step=0.05,
|
104 |
value=0.30,
|
105 |
)
|
106 |
-
|
107 |
image.webrtc_stream(
|
108 |
-
fn=detection,
|
109 |
-
inputs=[image],
|
110 |
-
stream_every=0.05,
|
111 |
-
time_limit=30
|
112 |
)
|
113 |
|
114 |
-
if __name__ ==
|
115 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
from gradio_webrtc import WebRTC
|
|
|
5 |
from twilio.rest import Client
|
6 |
import os
|
7 |
+
from inference import YOLOv10
|
8 |
+
|
9 |
+
model_file = hf_hub_download(
|
10 |
+
repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
|
11 |
+
)
|
12 |
+
|
13 |
+
model = YOLOv10(model_file)
|
14 |
|
15 |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
16 |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
|
|
23 |
"iceTransportPolicy": "relay",
|
24 |
}
|
25 |
|
26 |
+
rtc_configuration = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
def detection(image, conf_threshold=0.3):
|
30 |
+
image = cv2.resize(image, (model.input_width, model.input_height))
|
31 |
+
new_image = model.detect_objects(image, conf_threshold)
|
32 |
+
return new_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
+
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
|
36 |
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
37 |
|
38 |
|
|
|
40 |
gr.HTML(
|
41 |
"""
|
42 |
<h1 style='text-align: center'>
|
43 |
+
YOLOv10 Webcam Stream
|
44 |
</h1>
|
45 |
+
"""
|
46 |
+
)
|
47 |
+
gr.HTML(
|
48 |
+
"""
|
49 |
+
<h3 style='text-align: center'>
|
50 |
+
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
51 |
+
</h3>
|
52 |
+
"""
|
53 |
+
)
|
54 |
with gr.Column(elem_classes=["my-column"]):
|
55 |
with gr.Group(elem_classes=["my-group"]):
|
56 |
+
image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
|
57 |
conf_threshold = gr.Slider(
|
58 |
label="Confidence Threshold",
|
59 |
minimum=0.0,
|
|
|
61 |
step=0.05,
|
62 |
value=0.30,
|
63 |
)
|
64 |
+
|
65 |
image.webrtc_stream(
|
66 |
+
fn=detection, inputs=[image, conf_threshold], stream_every=0.05, time_limit=30
|
|
|
|
|
|
|
67 |
)
|
68 |
|
69 |
+
if __name__ == "__main__":
|
70 |
demo.launch()
|
inference.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import onnxruntime
|
5 |
+
|
6 |
+
from utils import draw_detections
|
7 |
+
|
8 |
+
|
9 |
+
class YOLOv10:
|
10 |
+
def __init__(self, path):
|
11 |
+
|
12 |
+
# Initialize model
|
13 |
+
self.initialize_model(path)
|
14 |
+
|
15 |
+
def __call__(self, image):
|
16 |
+
return self.detect_objects(image)
|
17 |
+
|
18 |
+
def initialize_model(self, path):
|
19 |
+
self.session = onnxruntime.InferenceSession(
|
20 |
+
path, providers=onnxruntime.get_available_providers()
|
21 |
+
)
|
22 |
+
# Get model info
|
23 |
+
self.get_input_details()
|
24 |
+
self.get_output_details()
|
25 |
+
|
26 |
+
def detect_objects(self, image, conf_threshold=0.3):
|
27 |
+
input_tensor = self.prepare_input(image)
|
28 |
+
|
29 |
+
# Perform inference on the image
|
30 |
+
new_image = self.inference(image, input_tensor, conf_threshold)
|
31 |
+
|
32 |
+
return new_image
|
33 |
+
|
34 |
+
def prepare_input(self, image):
|
35 |
+
self.img_height, self.img_width = image.shape[:2]
|
36 |
+
|
37 |
+
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
38 |
+
|
39 |
+
# Resize input image
|
40 |
+
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
|
41 |
+
|
42 |
+
# Scale input pixel values to 0 to 1
|
43 |
+
input_img = input_img / 255.0
|
44 |
+
input_img = input_img.transpose(2, 0, 1)
|
45 |
+
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
|
46 |
+
|
47 |
+
return input_tensor
|
48 |
+
|
49 |
+
def inference(self, image, input_tensor, conf_threshold=0.3):
|
50 |
+
start = time.perf_counter()
|
51 |
+
outputs = self.session.run(
|
52 |
+
self.output_names, {self.input_names[0]: input_tensor}
|
53 |
+
)
|
54 |
+
|
55 |
+
print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
|
56 |
+
boxes, scores, class_ids, = self.process_output(outputs, conf_threshold)
|
57 |
+
return self.draw_detections(image, boxes, scores, class_ids)
|
58 |
+
|
59 |
+
def process_output(self, output, conf_threshold=0.3):
|
60 |
+
predictions = np.squeeze(output[0])
|
61 |
+
|
62 |
+
# Filter out object confidence scores below threshold
|
63 |
+
scores = predictions[:, 4]
|
64 |
+
predictions = predictions[scores > conf_threshold, :]
|
65 |
+
scores = scores[scores > conf_threshold]
|
66 |
+
|
67 |
+
if len(scores) == 0:
|
68 |
+
return [], [], []
|
69 |
+
|
70 |
+
# Get the class with the highest confidence
|
71 |
+
class_ids = np.argmax(predictions[:, 4:], axis=1)
|
72 |
+
|
73 |
+
# Get bounding boxes for each object
|
74 |
+
boxes = self.extract_boxes(predictions)
|
75 |
+
|
76 |
+
return boxes, scores, class_ids
|
77 |
+
|
78 |
+
def extract_boxes(self, predictions):
|
79 |
+
# Extract boxes from predictions
|
80 |
+
boxes = predictions[:, :4]
|
81 |
+
|
82 |
+
# Scale boxes to original image dimensions
|
83 |
+
boxes = self.rescale_boxes(boxes)
|
84 |
+
|
85 |
+
# Convert boxes to xyxy format
|
86 |
+
#boxes = xywh2xyxy(boxes)
|
87 |
+
|
88 |
+
return boxes
|
89 |
+
|
90 |
+
def rescale_boxes(self, boxes):
|
91 |
+
# Rescale boxes to original image dimensions
|
92 |
+
input_shape = np.array(
|
93 |
+
[self.input_width, self.input_height, self.input_width, self.input_height]
|
94 |
+
)
|
95 |
+
boxes = np.divide(boxes, input_shape, dtype=np.float32)
|
96 |
+
boxes *= np.array(
|
97 |
+
[self.img_width, self.img_height, self.img_width, self.img_height]
|
98 |
+
)
|
99 |
+
return boxes
|
100 |
+
|
101 |
+
def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4):
|
102 |
+
return draw_detections(
|
103 |
+
image, boxes, scores, class_ids, mask_alpha
|
104 |
+
)
|
105 |
+
|
106 |
+
def get_input_details(self):
|
107 |
+
model_inputs = self.session.get_inputs()
|
108 |
+
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
|
109 |
+
|
110 |
+
self.input_shape = model_inputs[0].shape
|
111 |
+
self.input_height = self.input_shape[2]
|
112 |
+
self.input_width = self.input_shape[3]
|
113 |
+
|
114 |
+
def get_output_details(self):
|
115 |
+
model_outputs = self.session.get_outputs()
|
116 |
+
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
import requests
|
121 |
+
import tempfile
|
122 |
+
from huggingface_hub import hf_hub_download
|
123 |
+
|
124 |
+
model_file = hf_hub_download(
|
125 |
+
repo_id="onnx-community/yolov10s", filename="onnx/model.onnx"
|
126 |
+
)
|
127 |
+
|
128 |
+
yolov8_detector = YOLOv10(model_file)
|
129 |
+
|
130 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
|
131 |
+
f.write(
|
132 |
+
requests.get(
|
133 |
+
"https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
|
134 |
+
).content
|
135 |
+
)
|
136 |
+
f.seek(0)
|
137 |
+
img = cv2.imread(f.name)
|
138 |
+
|
139 |
+
# # Detect Objects
|
140 |
+
combined_image = yolov8_detector.detect_objects(img)
|
141 |
+
|
142 |
+
|
143 |
+
# Draw detections
|
144 |
+
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
|
145 |
+
cv2.imshow("Output", combined_image)
|
146 |
+
cv2.waitKey(0)
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
safetensors==0.4.3
|
2 |
opencv-python
|
|
|
3 |
https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/gradio-5.0.0b3-py3-none-any.whl
|
4 |
-
https://
|
5 |
-
|
|
|
1 |
safetensors==0.4.3
|
2 |
opencv-python
|
3 |
+
twilio
|
4 |
https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/gradio-5.0.0b3-py3-none-any.whl
|
5 |
+
https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/gradio_webrtc-0.0.1-py3-none-any.whl
|
6 |
+
onx-runtime
|
utils.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
class_names = [
|
5 |
+
"person",
|
6 |
+
"bicycle",
|
7 |
+
"car",
|
8 |
+
"motorcycle",
|
9 |
+
"airplane",
|
10 |
+
"bus",
|
11 |
+
"train",
|
12 |
+
"truck",
|
13 |
+
"boat",
|
14 |
+
"traffic light",
|
15 |
+
"fire hydrant",
|
16 |
+
"stop sign",
|
17 |
+
"parking meter",
|
18 |
+
"bench",
|
19 |
+
"bird",
|
20 |
+
"cat",
|
21 |
+
"dog",
|
22 |
+
"horse",
|
23 |
+
"sheep",
|
24 |
+
"cow",
|
25 |
+
"elephant",
|
26 |
+
"bear",
|
27 |
+
"zebra",
|
28 |
+
"giraffe",
|
29 |
+
"backpack",
|
30 |
+
"umbrella",
|
31 |
+
"handbag",
|
32 |
+
"tie",
|
33 |
+
"suitcase",
|
34 |
+
"frisbee",
|
35 |
+
"skis",
|
36 |
+
"snowboard",
|
37 |
+
"sports ball",
|
38 |
+
"kite",
|
39 |
+
"baseball bat",
|
40 |
+
"baseball glove",
|
41 |
+
"skateboard",
|
42 |
+
"surfboard",
|
43 |
+
"tennis racket",
|
44 |
+
"bottle",
|
45 |
+
"wine glass",
|
46 |
+
"cup",
|
47 |
+
"fork",
|
48 |
+
"knife",
|
49 |
+
"spoon",
|
50 |
+
"bowl",
|
51 |
+
"banana",
|
52 |
+
"apple",
|
53 |
+
"sandwich",
|
54 |
+
"orange",
|
55 |
+
"broccoli",
|
56 |
+
"carrot",
|
57 |
+
"hot dog",
|
58 |
+
"pizza",
|
59 |
+
"donut",
|
60 |
+
"cake",
|
61 |
+
"chair",
|
62 |
+
"couch",
|
63 |
+
"potted plant",
|
64 |
+
"bed",
|
65 |
+
"dining table",
|
66 |
+
"toilet",
|
67 |
+
"tv",
|
68 |
+
"laptop",
|
69 |
+
"mouse",
|
70 |
+
"remote",
|
71 |
+
"keyboard",
|
72 |
+
"cell phone",
|
73 |
+
"microwave",
|
74 |
+
"oven",
|
75 |
+
"toaster",
|
76 |
+
"sink",
|
77 |
+
"refrigerator",
|
78 |
+
"book",
|
79 |
+
"clock",
|
80 |
+
"vase",
|
81 |
+
"scissors",
|
82 |
+
"teddy bear",
|
83 |
+
"hair drier",
|
84 |
+
"toothbrush",
|
85 |
+
]
|
86 |
+
|
87 |
+
# Create a list of colors for each class where each color is a tuple of 3 integer values
|
88 |
+
rng = np.random.default_rng(3)
|
89 |
+
colors = rng.uniform(0, 255, size=(len(class_names), 3))
|
90 |
+
|
91 |
+
|
92 |
+
def nms(boxes, scores, iou_threshold):
|
93 |
+
# Sort by score
|
94 |
+
sorted_indices = np.argsort(scores)[::-1]
|
95 |
+
|
96 |
+
keep_boxes = []
|
97 |
+
while sorted_indices.size > 0:
|
98 |
+
# Pick the last box
|
99 |
+
box_id = sorted_indices[0]
|
100 |
+
keep_boxes.append(box_id)
|
101 |
+
|
102 |
+
# Compute IoU of the picked box with the rest
|
103 |
+
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
|
104 |
+
|
105 |
+
# Remove boxes with IoU over the threshold
|
106 |
+
keep_indices = np.where(ious < iou_threshold)[0]
|
107 |
+
|
108 |
+
# print(keep_indices.shape, sorted_indices.shape)
|
109 |
+
sorted_indices = sorted_indices[keep_indices + 1]
|
110 |
+
|
111 |
+
return keep_boxes
|
112 |
+
|
113 |
+
|
114 |
+
def multiclass_nms(boxes, scores, class_ids, iou_threshold):
|
115 |
+
unique_class_ids = np.unique(class_ids)
|
116 |
+
|
117 |
+
keep_boxes = []
|
118 |
+
for class_id in unique_class_ids:
|
119 |
+
class_indices = np.where(class_ids == class_id)[0]
|
120 |
+
class_boxes = boxes[class_indices, :]
|
121 |
+
class_scores = scores[class_indices]
|
122 |
+
|
123 |
+
class_keep_boxes = nms(class_boxes, class_scores, iou_threshold)
|
124 |
+
keep_boxes.extend(class_indices[class_keep_boxes])
|
125 |
+
|
126 |
+
return keep_boxes
|
127 |
+
|
128 |
+
|
129 |
+
def compute_iou(box, boxes):
|
130 |
+
# Compute xmin, ymin, xmax, ymax for both boxes
|
131 |
+
xmin = np.maximum(box[0], boxes[:, 0])
|
132 |
+
ymin = np.maximum(box[1], boxes[:, 1])
|
133 |
+
xmax = np.minimum(box[2], boxes[:, 2])
|
134 |
+
ymax = np.minimum(box[3], boxes[:, 3])
|
135 |
+
|
136 |
+
# Compute intersection area
|
137 |
+
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
|
138 |
+
|
139 |
+
# Compute union area
|
140 |
+
box_area = (box[2] - box[0]) * (box[3] - box[1])
|
141 |
+
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
142 |
+
union_area = box_area + boxes_area - intersection_area
|
143 |
+
|
144 |
+
# Compute IoU
|
145 |
+
iou = intersection_area / union_area
|
146 |
+
|
147 |
+
return iou
|
148 |
+
|
149 |
+
|
150 |
+
def xywh2xyxy(x):
|
151 |
+
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
|
152 |
+
y = np.copy(x)
|
153 |
+
y[..., 0] = x[..., 0] - x[..., 2] / 2
|
154 |
+
y[..., 1] = x[..., 1] - x[..., 3] / 2
|
155 |
+
y[..., 2] = x[..., 0] + x[..., 2] / 2
|
156 |
+
y[..., 3] = x[..., 1] + x[..., 3] / 2
|
157 |
+
return y
|
158 |
+
|
159 |
+
|
160 |
+
def draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3):
|
161 |
+
det_img = image.copy()
|
162 |
+
|
163 |
+
img_height, img_width = image.shape[:2]
|
164 |
+
font_size = min([img_height, img_width]) * 0.0006
|
165 |
+
text_thickness = int(min([img_height, img_width]) * 0.001)
|
166 |
+
|
167 |
+
#det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)
|
168 |
+
|
169 |
+
# Draw bounding boxes and labels of detections
|
170 |
+
for class_id, box, score in zip(class_ids, boxes, scores):
|
171 |
+
color = colors[class_id]
|
172 |
+
|
173 |
+
draw_box(det_img, box, color)
|
174 |
+
|
175 |
+
label = class_names[class_id]
|
176 |
+
caption = f"{label} {int(score * 100)}%"
|
177 |
+
draw_text(det_img, caption, box, color, font_size, text_thickness)
|
178 |
+
|
179 |
+
return det_img
|
180 |
+
|
181 |
+
|
182 |
+
def draw_box(
|
183 |
+
image: np.ndarray,
|
184 |
+
box: np.ndarray,
|
185 |
+
color: tuple[int, int, int] = (0, 0, 255),
|
186 |
+
thickness: int = 2,
|
187 |
+
) -> np.ndarray:
|
188 |
+
x1, y1, x2, y2 = box.astype(int)
|
189 |
+
return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
|
190 |
+
|
191 |
+
|
192 |
+
def draw_text(
|
193 |
+
image: np.ndarray,
|
194 |
+
text: str,
|
195 |
+
box: np.ndarray,
|
196 |
+
color: tuple[int, int, int] = (0, 0, 255),
|
197 |
+
font_size: float = 0.001,
|
198 |
+
text_thickness: int = 2,
|
199 |
+
) -> np.ndarray:
|
200 |
+
x1, y1, x2, y2 = box.astype(int)
|
201 |
+
(tw, th), _ = cv2.getTextSize(
|
202 |
+
text=text,
|
203 |
+
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
204 |
+
fontScale=font_size,
|
205 |
+
thickness=text_thickness,
|
206 |
+
)
|
207 |
+
th = int(th * 1.2)
|
208 |
+
|
209 |
+
cv2.rectangle(image, (x1, y1), (x1 + tw, y1 - th), color, -1)
|
210 |
+
|
211 |
+
return cv2.putText(
|
212 |
+
image,
|
213 |
+
text,
|
214 |
+
(x1, y1),
|
215 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
216 |
+
font_size,
|
217 |
+
(255, 255, 255),
|
218 |
+
text_thickness,
|
219 |
+
cv2.LINE_AA,
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
def draw_masks(
|
224 |
+
image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3
|
225 |
+
) -> np.ndarray:
|
226 |
+
mask_img = image.copy()
|
227 |
+
|
228 |
+
# Draw bounding boxes and labels of detections
|
229 |
+
for box, class_id in zip(boxes, classes):
|
230 |
+
color = colors[class_id]
|
231 |
+
|
232 |
+
x1, y1, x2, y2 = box.astype(int)
|
233 |
+
|
234 |
+
# Draw fill rectangle in mask image
|
235 |
+
cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)
|
236 |
+
|
237 |
+
return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)
|