Update app.py
Browse filesUpdate to Skin
app.py
CHANGED
@@ -6,13 +6,13 @@ import pandas as pd
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
|
8 |
# Load the trained model
|
9 |
-
model_path = "
|
10 |
model = tf.keras.models.load_model(model_path)
|
11 |
|
12 |
# Define the core prediction function
|
13 |
-
def
|
14 |
# Preprocess image
|
15 |
-
image = image.resize((
|
16 |
image = image.convert('RGB') # Ensure image has 3 channels
|
17 |
image = np.array(image)
|
18 |
image = np.expand_dims(image, axis=0) # Add batch dimension
|
@@ -23,15 +23,15 @@ def predict_pokemon(image):
|
|
23 |
# Apply softmax to get probabilities for each class
|
24 |
probabilities = tf.nn.softmax(prediction, axis=1)
|
25 |
|
26 |
-
# Map probabilities to
|
27 |
-
class_names = ['
|
28 |
-
probabilities_dict = {
|
29 |
|
30 |
return probabilities_dict
|
31 |
|
32 |
# Streamlit interface
|
33 |
-
st.title("
|
34 |
-
st.write("
|
35 |
|
36 |
# Upload image
|
37 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
@@ -42,24 +42,18 @@ if uploaded_image is not None:
|
|
42 |
st.write("")
|
43 |
st.write("Classifying...")
|
44 |
|
45 |
-
predictions =
|
46 |
|
47 |
# Display predictions as a DataFrame
|
48 |
st.write("### Prediction Probabilities")
|
49 |
-
df = pd.DataFrame(predictions.items(), columns=["
|
50 |
st.dataframe(df)
|
51 |
|
52 |
# Display predictions as a bar chart
|
53 |
st.write("### Prediction Chart")
|
54 |
fig, ax = plt.subplots()
|
55 |
-
ax.barh(df["
|
56 |
ax.set_xlim(0, 1)
|
57 |
ax.set_xlabel('Probability')
|
58 |
ax.set_title('Prediction Probabilities')
|
59 |
-
st.pyplot(fig)
|
60 |
-
|
61 |
-
# Example images
|
62 |
-
st.sidebar.title("Examples")
|
63 |
-
example_images = ["pokemon/00000000.png","pokemon/00000001.png","pokemon/00000002.png"]
|
64 |
-
for example_image in example_images:
|
65 |
-
st.sidebar.image(example_image, use_column_width=True)
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
|
8 |
# Load the trained model
|
9 |
+
model_path = "skin-model_transferlearning.keras"
|
10 |
model = tf.keras.models.load_model(model_path)
|
11 |
|
12 |
# Define the core prediction function
|
13 |
+
def predict_skin(image):
|
14 |
# Preprocess image
|
15 |
+
image = image.resize((450, 450)) # Resize the image to 150x150
|
16 |
image = image.convert('RGB') # Ensure image has 3 channels
|
17 |
image = np.array(image)
|
18 |
image = np.expand_dims(image, axis=0) # Add batch dimension
|
|
|
23 |
# Apply softmax to get probabilities for each class
|
24 |
probabilities = tf.nn.softmax(prediction, axis=1)
|
25 |
|
26 |
+
# Map probabilities to Skin condition classes
|
27 |
+
class_names = ['AKIEC', 'BCC', 'BKL', 'DF', 'MEL', 'NV', 'VASC']
|
28 |
+
probabilities_dict = {skin_class: round(float(probability), 2) for skin_class, probability in zip(class_names, probabilities.numpy()[0])}
|
29 |
|
30 |
return probabilities_dict
|
31 |
|
32 |
# Streamlit interface
|
33 |
+
st.title("Skin disease classifier")
|
34 |
+
st.write("Choose a picture:")
|
35 |
|
36 |
# Upload image
|
37 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
|
|
42 |
st.write("")
|
43 |
st.write("Classifying...")
|
44 |
|
45 |
+
predictions = predict_skin(image)
|
46 |
|
47 |
# Display predictions as a DataFrame
|
48 |
st.write("### Prediction Probabilities")
|
49 |
+
df = pd.DataFrame(predictions.items(), columns=["Condition", "Probability"])
|
50 |
st.dataframe(df)
|
51 |
|
52 |
# Display predictions as a bar chart
|
53 |
st.write("### Prediction Chart")
|
54 |
fig, ax = plt.subplots()
|
55 |
+
ax.barh(df["Condition"], df["Probability"], color='skyblue')
|
56 |
ax.set_xlim(0, 1)
|
57 |
ax.set_xlabel('Probability')
|
58 |
ax.set_title('Prediction Probabilities')
|
59 |
+
st.pyplot(fig)
|
|
|
|
|
|
|
|
|
|
|
|