File size: 4,728 Bytes
fadb85c 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 82a65d2 56fb801 a9a3664 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 82a65d2 56fb801 c59b75f 56fb801 82a65d2 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 82a65d2 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 c59b75f 56fb801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Copyright (C) 2021-2023, François-Guillaume Fernandez.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
from io import BytesIO
import matplotlib.pyplot as plt
import requests
import streamlit as st
import torch
from PIL import Image
from torchvision import models
from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor
from torchcam import methods
from torchcam.methods._utils import locate_candidate_layer
from torchcam.utils import overlay_mask
CAM_METHODS = ["CAM", "GradCAM", "GradCAMpp", "SmoothGradCAMpp", "ScoreCAM", "SSCAM", "ISCAM", "XGradCAM", "LayerCAM"]
TV_MODELS = [
"resnet18",
"resnet50",
"mobilenet_v3_small",
"mobilenet_v3_large",
"regnet_y_400mf",
"convnext_tiny",
"convnext_small",
]
LABEL_MAP = requests.get(
"https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
).json()
def main():
# Wide mode
st.set_page_config(layout="wide")
# Designing the interface
st.title("TorchCAM: class activation explorer")
# For newline
st.write("\n")
# Set the columns
cols = st.columns((1, 1, 1))
cols[0].header("Input image")
cols[1].header("Raw CAM")
cols[-1].header("Overlayed CAM")
# Sidebar
# File selection
st.sidebar.title("Input selection")
# Disabling warning
st.set_option("deprecation.showfileUploaderEncoding", False)
# Choose your own image
uploaded_file = st.sidebar.file_uploader("Upload files", type=["png", "jpeg", "jpg"])
if uploaded_file is not None:
img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB")
cols[0].image(img, use_column_width=True)
# Model selection
st.sidebar.title("Setup")
tv_model = st.sidebar.selectbox(
"Classification model",
TV_MODELS,
help="Supported models from Torchvision",
)
default_layer = ""
if tv_model is not None:
with st.spinner("Loading model..."):
model = models.__dict__[tv_model](pretrained=True).eval()
default_layer = locate_candidate_layer(model, (3, 224, 224))
if torch.cuda.is_available():
model = model.cuda()
target_layer = st.sidebar.text_input(
"Target layer",
default_layer,
help='If you want to target several layers, add a "+" separator (e.g. "layer3+layer4")',
)
cam_method = st.sidebar.selectbox(
"CAM method",
CAM_METHODS,
help="The way your class activation map will be computed",
)
if cam_method is not None:
cam_extractor = methods.__dict__[cam_method](
model, target_layer=[s.strip() for s in target_layer.split("+")] if len(target_layer) > 0 else None
)
class_choices = [f"{idx + 1} - {class_name}" for idx, class_name in enumerate(LABEL_MAP)]
class_selection = st.sidebar.selectbox("Class selection", ["Predicted class (argmax)"] + class_choices)
# For newline
st.sidebar.write("\n")
if st.sidebar.button("Compute CAM"):
if uploaded_file is None:
st.sidebar.error("Please upload an image first")
else:
with st.spinner("Analyzing..."):
# Preprocess image
img_tensor = normalize(to_tensor(resize(img, (224, 224))), [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
if torch.cuda.is_available():
img_tensor = img_tensor.cuda()
# Forward the image to the model
out = model(img_tensor.unsqueeze(0))
# Select the target class
if class_selection == "Predicted class (argmax)":
class_idx = out.squeeze(0).argmax().item()
else:
class_idx = LABEL_MAP.index(class_selection.rpartition(" - ")[-1])
# Retrieve the CAM
act_maps = cam_extractor(class_idx, out)
# Fuse the CAMs if there are several
activation_map = act_maps[0] if len(act_maps) == 1 else cam_extractor.fuse_cams(act_maps)
# Plot the raw heatmap
fig, ax = plt.subplots()
ax.imshow(activation_map.squeeze(0).cpu().numpy())
ax.axis("off")
cols[1].pyplot(fig)
# Overlayed CAM
fig, ax = plt.subplots()
result = overlay_mask(img, to_pil_image(activation_map, mode="F"), alpha=0.5)
ax.imshow(result)
ax.axis("off")
cols[-1].pyplot(fig)
if __name__ == "__main__":
main()
|