Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
|
|
3 |
import numpy as np
|
4 |
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
def predict_iris(sepal_length, sepal_width, petal_length, petal_width):
|
13 |
-
features = [sepal_length, sepal_width, petal_length, petal_width]
|
14 |
-
features = np.array(features)[None, ...]
|
15 |
-
prediction = model.predict(features)
|
16 |
-
print(prediction)
|
17 |
-
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
18 |
-
return confidences
|
19 |
|
20 |
-
|
|
|
21 |
iface = gr.Interface(
|
22 |
-
fn=
|
23 |
-
inputs=
|
24 |
-
outputs=
|
25 |
-
|
|
|
26 |
)
|
27 |
|
|
|
28 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
import numpy as np
|
5 |
|
6 |
+
labels = ['Cubone', 'Ditto', 'Psyduck', 'Snorlax', 'Weedle']
|
7 |
|
8 |
+
def predict_pokemon_type(uploaded_file):
|
9 |
+
"""Process the uploaded file."""
|
10 |
+
if uploaded_file is None:
|
11 |
+
return "No file uploaded."
|
12 |
+
|
13 |
+
model = tf.keras.models.load_model('pokemon-model_transferlearning.keras')
|
14 |
+
# Load the image from the file path
|
15 |
+
with Image.open(uploaded_file) as img:
|
16 |
+
img = img.resize((200, 200))
|
17 |
+
img_array = np.array(img)
|
18 |
|
19 |
+
prediction = model.predict(np.expand_dims(img_array, axis=0))
|
20 |
+
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
21 |
|
22 |
+
return confidences
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
|
25 |
+
# Define the Gradio interface
|
26 |
iface = gr.Interface(
|
27 |
+
fn=predict_pokemon_type, # Function to process the input
|
28 |
+
inputs=gr.File(label="Upload File"), # File upload widget
|
29 |
+
outputs="text", # Output type
|
30 |
+
title="Pokemon Classifier", # Title of the interface
|
31 |
+
description="Upload a picture of a pokemon (preferably Cubone, Ditto, Psyduck, Snorlax or Weedle), because the model was trained on 'em. It has an astonishing accuracy of 16% :)" # Description of the interface
|
32 |
)
|
33 |
|
34 |
+
# Launch the interface
|
35 |
iface.launch()
|