Update app.py
Browse files
app.py
CHANGED
@@ -2,34 +2,36 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
-
|
6 |
labels = ['Cubone', 'Ditto', 'Psyduck', 'Snorlax', 'Weedle']
|
7 |
-
|
8 |
def predict_pokemon_type(uploaded_file):
|
9 |
-
|
10 |
if uploaded_file is None:
|
11 |
-
return "No file uploaded."
|
12 |
-
|
13 |
model = tf.keras.models.load_model('pokemon-model_transferlearning.keras')
|
|
|
14 |
# Load the image from the file path
|
15 |
with Image.open(uploaded_file) as img:
|
16 |
-
img = img.resize((150, 150))
|
17 |
img_array = np.array(img)
|
18 |
-
|
19 |
prediction = model.predict(np.expand_dims(img_array, axis=0))
|
20 |
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
# Define the Gradio interface
|
26 |
iface = gr.Interface(
|
27 |
fn=predict_pokemon_type, # Function to process the input
|
28 |
inputs=gr.File(label="Upload File"), # File upload widget
|
29 |
-
outputs="text", # Output
|
30 |
title="Pokemon Classifier", # Title of the interface
|
31 |
-
description="Upload a picture of a
|
32 |
)
|
33 |
-
|
34 |
# Launch the interface
|
35 |
-
iface.launch()
|
|
|
2 |
import tensorflow as tf
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
+
|
6 |
labels = ['Cubone', 'Ditto', 'Psyduck', 'Snorlax', 'Weedle']
|
7 |
+
|
8 |
def predict_pokemon_type(uploaded_file):
|
|
|
9 |
if uploaded_file is None:
|
10 |
+
return "No file uploaded.", None, "No prediction"
|
11 |
+
|
12 |
model = tf.keras.models.load_model('pokemon-model_transferlearning.keras')
|
13 |
+
|
14 |
# Load the image from the file path
|
15 |
with Image.open(uploaded_file) as img:
|
16 |
+
img = img.resize((150, 150))
|
17 |
img_array = np.array(img)
|
18 |
+
|
19 |
prediction = model.predict(np.expand_dims(img_array, axis=0))
|
20 |
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
21 |
+
|
22 |
+
# Identify the most confident prediction
|
23 |
+
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
24 |
+
|
25 |
+
return img, confidences
|
26 |
+
|
27 |
# Define the Gradio interface
|
28 |
iface = gr.Interface(
|
29 |
fn=predict_pokemon_type, # Function to process the input
|
30 |
inputs=gr.File(label="Upload File"), # File upload widget
|
31 |
+
outputs=["image", "text"], # Output types for image and text
|
32 |
title="Pokemon Classifier", # Title of the interface
|
33 |
+
description="Upload a picture of a Pokemon (preferably Cubone, Ditto, Psyduck, Snorlax, or Weedle) to see its type and confidence level." # Description of the interface
|
34 |
)
|
35 |
+
|
36 |
# Launch the interface
|
37 |
+
iface.launch()
|