Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
from transformers import AutoConfig, AutoModel, pipeline, AutoProcessor, AutoModelForZeroShotImageClassification | |
from PIL import Image | |
import os | |
import cv2 | |
import numpy as np | |
import requests | |
st.set_page_config( | |
page_title = 'Patacotrón', | |
layout = 'wide', | |
menu_items = { | |
"About" : 'Proyecto ideado para la investigación de "Clasificación de imágenes de una sola clase con algortimos de Inteligencia Artificial".', | |
"Report a Bug" : 'https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link' | |
} | |
) | |
st.sidebar.write("contact@patacotron.tech") | |
cnn, vit, zero_shot, autoencoder, svm, iforest, gan = st.tabs(["CNN", "ViT", "Zero-Shot", "Autoencoder", "OC-SVM", 'iForest', 'GAN']) | |
def predict(_model_list, _weights, _img): | |
y_gorrito = 0 | |
raw_img = cv2.cvtColor(_img, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(_img, (IMAGE_WIDTH, IMAGE_HEIGHT)) | |
for model, weight in zip(_model_list, _weights): | |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight | |
return [y_gorrito / sum(_weights), raw_img] | |
def preprocess(file_uploader, module = 'cv2'): #makes the uploaded image readable | |
img = np.frombuffer(uploaded_file.read(), np.uint8) | |
if module == 'cv2': | |
img = cv2.imdecode(img, cv2.IMREAD_COLOR) | |
elif module == 'pil': | |
img = Image.open(file_uploader) | |
return img | |
def multiclass_prediction(classifier, important_class): #made for hf zero-shot pipeline results | |
score = (max([classifier[i]['score'] for i in range(len(classifier))])) | |
labels = [predict['label'] for predict in classifier if score == predict['score']] | |
for clase in classifier: | |
if clase['label'] == important_class: | |
class_score = clase['score'] | |
return (labels[0] if len(labels) == 1 else labels, score, class_score) | |
API_URL = "https://api-inference.huggingface.co/models" | |
headers = {"Authorization": f"Bearer {st.secrets['token']}"} | |
def query(data, model_name): #HF API | |
response = requests.post(API_URL + "/" + model_name, headers=headers, data=data) | |
while "error" in response.json(): | |
response = requests.post(API_URL + "/" + model_name, headers=headers, data=data) | |
st.write("Done.") | |
return response.json() #.json | |
def load_clip(): | |
#processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14-336") | |
#model = AutoModelForZeroShotImageClassification.from_pretrained("openai/clip-vit-large-patch14-336") | |
classifier = pipeline("zero-shot-image-classification", model = 'openai/clip-vit-large-patch14-336') | |
return classifier | |
with cnn: | |
col_a, col_b, = st.columns(2) | |
ultra_flag = None | |
with col_a: | |
st.title("Redes neuronales convolucionales") | |
st.caption("Los modelos no están en orden de eficacia, sino en orden de creación.") | |
current_dir = os.getcwd() | |
root_dir = os.path.dirname(current_dir) | |
# Join the path to the models folder | |
DIR = os.path.join(current_dir, "models") | |
models = os.listdir(DIR) | |
common_root = r"/home/user/app/models/ptctrn_v" | |
common_end = ".h5" | |
model_dict = dict() | |
for model in models: #preprocessing of strings so the name is readable in the multiselect bar | |
model_dir = os.path.join(DIR, model) | |
model_name = 'Patacotrón ' + model_dir.split(common_root)[-1].split(common_end)[0] | |
model_dict[model_name] = model_dir | |
#ultraversions = ['Patacotrón 1.5', 'Patacotrón 1.7', 'Patacotrón 1.8', 'Patacotrón 1.12', 'Patacotrón 1.12.2', 'Patacotrón 1.12.3'] | |
#ultraversions = ['Patacotrón 1.5', 'Patacotrón 1.6', 'Patacotrón 1.12.2', 'Patacotrón 1.8', 'Patacotrón 1.12']#, 'Patacotrón 1.13.20', 'Patacotrón 1.13.38'] | |
#['Patacotrón 1.5', 'Patacotrón 1.6', 'Patacotrón 1.7', 'Patacotrón 1.12'] # | |
#ultra_button = st.checkbox('Ultra-Patacotrón (en construcción, no es la mejor versión)') | |
#ultra_flag = False | |
weight_list = [] | |
#if ultra_button: | |
# ultra_flag = True | |
#weight_list = [3, 1, 4.5, 1, .8, 1] [.5, 1.75, 4, .5, 2] | |
# weight_list = [2.5, 1.8, 1.5, 3.14, 2.2] #.2, 2] | |
#[1, 2, 3, 2.5] | |
# st.caption('Para Ultra-Patacotrón, este porcentaje no representa una a priori una probabilidad, sino la combinación ponderada de modelos con sesgos positivos y negativos, lo importante es que identifique correctamente el objeto.') | |
# Create a dropdown menu to select the model | |
model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys()) | |
threshold = st.slider('¿Cuál va a ser el límite donde se considere patacón? (el valor recomendado es de 75%-80%)', 0, 100, 50, key = 'threshold_convnet') | |
selected_models = [] | |
# Set the image dimensions | |
IMAGE_WIDTH = IMAGE_HEIGHT = 224 | |
executed = False | |
with col_b: | |
uploaded_file = st.file_uploader(key = 'convnet_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic']) | |
if st.button(key = 'convnet_button', label ='¿Hay un patacón en la imagen?'): | |
if len(model_choice) < 1: | |
#if (len(model_choice) > 0 and ultra_flag) or (len(model_choice) == 0 and ultra_flag is None): | |
st.write('Debe elegir como mínimo un modelo.') | |
elif uploaded_file is not None: | |
img = preprocess(uploaded_file) | |
#if ultra_flag: | |
# with st.spinner('Cargando ultra-predicción...'): | |
# if not executed: | |
# ultraptctrn = [load_model(model_dict[model]) for model in ultraversions] | |
# executed = True | |
# final_weights = weight_list if len(weight_list) >= 1 else [1 for i in range(len(ultraptctrn))] | |
# y_gorrito, raw_img = predict(ultraptctrn, final_weights, img) | |
#else: | |
with st.spinner('Cargando predicción...'): | |
selected_models = [load_model(model_dict[model]) for model in model_choice if model not in selected_models] | |
final_weights = weight_list if len(weight_list) >= 1 else [1 for i in range(len(selected_models))] | |
y_gorrito, raw_img = predict(selected_models, final_weights, img) | |
if round(float(y_gorrito*100)) >= threshold: | |
st.success("¡Patacón Detectado!") | |
else: | |
st.error("No se considera que haya un patacón en la imagen") | |
st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito * 100), 2)}%') | |
st.caption('Si los resultados no fueron los esperados, por favor, [haz click aquí](https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link)') | |
st.image(raw_img) | |
else: | |
st.write('Revisa haber seleccionado los modelos y la imagen correctamente.') | |
with vit: | |
col_a, col_b = st.columns(2) | |
with col_a: | |
st.title('Visual Transformers') | |
st.caption('One class is all you need!') | |
model_dict = { | |
'google/vit-base-patch16-224-in21k' : 'frncscp/patacoptimus-prime', | |
'facebook/convnext-large-224' : 'frncscp/pataconxt' | |
} | |
model_choice = st.multiselect("Seleccione un modelo de clasificación", model_dict.keys(), key = 'ViT_multiselect') | |
uploaded_file = st.file_uploader(key = 'ViT_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic']) | |
flag = False | |
threshold = st.slider('¿Cuál va a ser el límite desde donde se considere patacón? (se recomienda por encima del 80%)', 0, 100, 80, key = 'threshold_vit') | |
with col_b: | |
if st.button(key = 'ViT_button', label ='¿Hay un patacón en la imagen?'): | |
if len(model_choice) < 1: | |
print('Recuerda seleccionar al menos un modelo de clasificación') | |
elif uploaded_file is not None: | |
with st.spinner('Cargando predicción...'): | |
api_result = query(uploaded_file.read(), model_dict[model_choice[0]]) | |
#classifiers = [pipeline("image-classification", model= model_dict[model_choice[i]]) for i in range(len(model_choice))] | |
#classifier = pipeline("image-classification", model= model_dict[model_choice[0]]) | |
#img = preprocess(uploaded_file, module = 'pil') | |
def vit_ensemble(classifier_list, img): | |
y_gorrito = 0 | |
for classifier in classifier_list: | |
classifier = classifier(img) | |
for clase in classifier: | |
if clase['label'] == 'Patacon-True': | |
y_gorrito += clase["score"] | |
return y_gorrito / len(classifier_list) | |
y_gorrito = 0 | |
for model in model_choice: | |
api_result = query(uploaded_file.read(), model_dict[model]) | |
y_gorrito += api_result[1]["score"] | |
y_gorrito /= len(model_choice) | |
#classifier = classifier(img) | |
#for clase in classifier: | |
# if clase['label'] == 'Patacon-True': | |
# y_gorrito = clase["score"] | |
#y_gorrito = classifier[0]["score"] | |
#y_gorrito = vit_ensemble(classifiers, img) | |
if round(float(y_gorrito*100)) >= threshold: | |
st.success("¡Patacón Detectado!") | |
else: | |
st.error("No se considera que haya un patacón en la imagen") | |
st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito * 100), 2)}%') | |
st.image(img) | |
else: | |
st.write("Asegúrate de haber subido correctamente la imagen.") | |
with zero_shot: | |
col_a, col_b = st.columns(2) | |
zsloaded = [] | |
with col_a: | |
st.title("Clasificación Zero-Shot") | |
st.caption("Usando Clip de OpenAI") | |
labels_for_classification = ["A yellow deep fried smashed plantain", | |
"Fried food", | |
"Fruit", | |
"Anything"] | |
uploaded_file = st.file_uploader(key = 'ZS_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic']) | |
with col_b: | |
if st.button(key = 'ZS_button', label ='¿Hay un patacón en la imagen?'): | |
if uploaded_file is not None: | |
with st.spinner('Cargando el modelo (puede demorar hasta un minuto, pero después predice rápido)'): | |
classifier = load_clip() | |
with st.spinner('Cargando predicción...'): | |
img = preprocess(uploaded_file, module = 'pil') | |
zs_classifier = classifier(img, | |
candidate_labels = labels_for_classification) | |
label, _, y_gorrito = multiclass_prediction(zs_classifier, labels_for_classification[0]) | |
if label == "A yellow deep fried smashed plantain": | |
st.success("¡Patacón Detectado!") | |
else: | |
st.error("No se considera que haya un patacón en la imagen") | |
st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito * 100), 2)}%') | |
st.image(img) | |
else: | |
st.write("Asegúrate de haber subido correctamente la imagen.") | |
with autoencoder: | |
st.write('Próximamente') | |
with gan: | |
st.write('Próximamente') | |
with svm: | |
st.write('Próximamente') | |
with iforest: | |
st.write('Próximamente') |