Patacotron / pages /Entorno de Ejecución.py
frncscp's picture
Update pages/Entorno de Ejecución.py
e035334
raw
history blame
4.02 kB
import streamlit as st
import tensorflow as tf
import numpy as np
from keras.models import load_model
from tensorflow.keras.backend import clear_session
import cv2
import os
st.set_page_config(
page_title = 'Patacotrón',
initial_sidebar_state = 'collapsed',
menu_items = {
"About" : 'Proyecto ideado para la investigación de "Clasificación de imágenes de una sola clase con algortimos de Inteligencia Artificial".',
"Report a Bug" : 'https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link'
}
)
col_a, col_b, = st.columns(2)
with col_a:
st.title("Entorno de ejecución")
st.caption("Los modelos no están en orden de eficacia, sino en orden de creación.")
# Get the absolute path to the current directory
current_dir = os.path.abspath(os.path.dirname(__file__))
# Get the absolute path to the parent directory of the current directory
root_dir = os.path.abspath(os.path.join(current_dir, os.pardir))
# Join the path to the models folder
DIR = os.path.join(root_dir, "models")
threshold = .8
ultra_button = st.checkbox('Usar ensamblaje de los modelos con mayor eficacia hasta la fecha (mejores resultados)')
ultra_flag = False
if ultra_button:
ultra_flag = True
models = os.listdir(DIR)
model_dict = dict()
for model in models:
model_name = model.split(DIR)
model_name = str(model.split('.h5')[0])
model_dir = os.path.join(DIR, model)
model_dict[model_name] = model_dir
ultraptctrn = ['ptctrn_v1.6', 'ptctrn_v1.8', 'ptctrn_v1.9.1', 'ptctrn_v1.12']
# Create a dropdown menu to select the model
model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys())
selected_models = []
def ensemble_model(model_list, img):
y_gorrito = np.zeros((1, 1))
for model in model_list:
instance_model = load_model(model_dict[model])
y_gorrito += float(instance_model.predict(np.expand_dims(img, 0)))
clear_session()
return y_gorrito/len(model_list)
for model in model_choice:
selected_models.append(model)
# Set the image dimensions
IMAGE_WIDTH = IMAGE_HEIGHT = 224
uploaded_file = st.file_uploader(label = '',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
with col_b:
if st.button('¿Hay un patacón en la imagen?'):
if uploaded_file is not None and len(selected_models) > 0 or ultra_flag:
# Load the image and resize it to the required dimensions
img = np.frombuffer(uploaded_file.read(), np.uint8)
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
raw_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
# Convert the image to RGB and preprocess it for the model
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img / 255.
# Pass the image to the model and get the prediction
if ultra_flag:
with st.spinner('Cargando ultra-predicción...'):
y_gorrito = ensemble_model(ultraptctrn, img)
else:
with st.spinner('Cargando predicción...'):
y_gorrito = ensemble_model(selected_models, img)
if y_gorrito > threshold:
st.success("¡Patacón Detectado!")
else:
st.error("No se encontró rastro de patacón.")
st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito), 2)*100}%')
#st.write('Si los resultados no fueron los esperados, por favor, despliga la barra lateral y entra al botón "Report a Bug"')
st.image(raw_img)
else:
st.write('Revisa haber seleccionado los modelos y la imagen correctamente.')