Spaces:
Running
Running
Update pages/Entorno de Ejecución.py
Browse files- pages/Entorno de Ejecución.py +27 -15
pages/Entorno de Ejecución.py
CHANGED
@@ -32,24 +32,36 @@ classic_ml_root = "/home/user/app/classicML"
|
|
32 |
def load_pca():
|
33 |
return joblib.load(os.path.join(classic_ml_root, "pca_model.pkl"))
|
34 |
|
35 |
-
def _predict(_model_list,
|
36 |
y_gorrito = 0
|
37 |
raw_img = cv2.cvtColor(_img, cv2.COLOR_BGR2RGB)
|
38 |
img = cv2.resize(_img, (IMAGE_WIDTH, IMAGE_HEIGHT))
|
39 |
-
for model, weight in zip(_model_list, _weights):
|
40 |
-
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight
|
41 |
-
return [y_gorrito / sum(_weights), raw_img]
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
#def classic_ml_prediction(clfs, _img):
|
55 |
# y_gorrito = 0
|
@@ -328,7 +340,7 @@ with classic_ml:
|
|
328 |
|
329 |
img = preprocess(uploaded_file)
|
330 |
selected_models = [joblib.load(model_dict[model_name]) for model_name in model_choice]
|
331 |
-
y_gorrito, raw_img =
|
332 |
|
333 |
if round(float(y_gorrito*100)) >= threshold:
|
334 |
st.success("¡Patacón Detectado!")
|
|
|
32 |
def load_pca():
|
33 |
return joblib.load(os.path.join(classic_ml_root, "pca_model.pkl"))
|
34 |
|
35 |
+
def _predict(_model_list, _img, sklearn = False):
|
36 |
y_gorrito = 0
|
37 |
raw_img = cv2.cvtColor(_img, cv2.COLOR_BGR2RGB)
|
38 |
img = cv2.resize(_img, (IMAGE_WIDTH, IMAGE_HEIGHT))
|
|
|
|
|
|
|
39 |
|
40 |
+
if sklearn:
|
41 |
+
fl_img =[img.flatten()]
|
42 |
+
data = pca.transform(fl_img)
|
43 |
+
for model in _model_list:
|
44 |
+
prediction = model.predict_proba(data)
|
45 |
+
y_gorrito += prediction[0][Categories.index("Patacon-True")]
|
46 |
+
|
47 |
+
else:
|
48 |
+
for model in _model_list:
|
49 |
+
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight
|
50 |
+
|
51 |
+
return [y_gorrito / len(_model_list), raw_img]
|
52 |
+
|
53 |
+
|
54 |
+
#def _pca_predict(models, _img):
|
55 |
+
# y_gorrito = 0
|
56 |
+
# raw_img = cv2.cvtColor(_img, cv2.COLOR_BGR2RGB)
|
57 |
+
# img = cv2.resize(_img, (IMAGE_WIDTH, IMAGE_HEIGHT))
|
58 |
+
# fl_img =[img.flatten()]
|
59 |
+
# data = pca.transform(fl_img)
|
60 |
+
# for model in models:
|
61 |
+
# prediction = model.predict_proba(data)
|
62 |
+
# y_gorrito += prediction[0][Categories.index("Patacon-True")]
|
63 |
+
# return [y_gorrito / len(models), raw_img]
|
64 |
+
|
65 |
|
66 |
#def classic_ml_prediction(clfs, _img):
|
67 |
# y_gorrito = 0
|
|
|
340 |
|
341 |
img = preprocess(uploaded_file)
|
342 |
selected_models = [joblib.load(model_dict[model_name]) for model_name in model_choice]
|
343 |
+
y_gorrito, raw_img = _predict(selected_models, img, sklearn = True)
|
344 |
|
345 |
if round(float(y_gorrito*100)) >= threshold:
|
346 |
st.success("¡Patacón Detectado!")
|