frncscp commited on
Commit
2b50937
·
1 Parent(s): 0a1c2ab

Update pages/Entorno de Ejecución.py

Browse files
Files changed (1) hide show
  1. pages/Entorno de Ejecución.py +7 -6
pages/Entorno de Ejecución.py CHANGED
@@ -2,8 +2,7 @@ import streamlit as st
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
  from transformers import pipeline
5
- from PIL import Image
6
-
7
  import os
8
  import cv2
9
  import numpy as np
@@ -77,7 +76,8 @@ with cnn:
77
  if module == 'cv2':
78
  img = cv2.imdecode(img, cv2.IMREAD_COLOR)
79
  elif module == 'pil':
80
- img = Image.open(file_uploader.read())
 
81
  return img
82
 
83
  # Set the image dimensions
@@ -86,7 +86,7 @@ with cnn:
86
  executed = False
87
 
88
  with col_b:
89
-
90
  uploaded_file = st.file_uploader(key = 'convnet_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
91
 
92
  if st.button(key = 'convnet_button', label ='¿Hay un patacón en la imagen?'):
@@ -96,7 +96,7 @@ with cnn:
96
  elif uploaded_file is not None:
97
  img = preprocess(uploaded_file)
98
  if ultra_flag:
99
- with st.spinner('Cargando ultra-predicción...'):
100
  if not executed:
101
  ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
102
  executed = True
@@ -132,7 +132,7 @@ with iforest:
132
  with gan:
133
  st.write('Próximamente')
134
  with vit:
135
-
136
  col_a, col_b = st.columns(2)
137
 
138
  with col_a:
@@ -141,6 +141,7 @@ with vit:
141
  uploaded_file = st.file_uploader(key = 'ViT_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
142
  if st.button(key = 'ViT_button', label ='¿Hay un patacón en la imagen?'):
143
  if uploaded_file is not None:
 
144
  classifier = pipeline("image-classification", model="frncscp/patacoptimus-prime")
145
  img = preprocess(uploaded_file, module = 'pil')
146
  raw_img = img
 
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
  from transformers import pipeline
5
+ from PIL import Image
 
6
  import os
7
  import cv2
8
  import numpy as np
 
76
  if module == 'cv2':
77
  img = cv2.imdecode(img, cv2.IMREAD_COLOR)
78
  elif module == 'pil':
79
+ img = Image.frombuffer(data = uploaded_file.read())
80
+ #img = Image.open(io.BytesIO(file_uploader.read()))
81
  return img
82
 
83
  # Set the image dimensions
 
86
  executed = False
87
 
88
  with col_b:
89
+
90
  uploaded_file = st.file_uploader(key = 'convnet_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
91
 
92
  if st.button(key = 'convnet_button', label ='¿Hay un patacón en la imagen?'):
 
96
  elif uploaded_file is not None:
97
  img = preprocess(uploaded_file)
98
  if ultra_flag:
99
+ with st.spinner('Cargando ultra-predicción...', key = 'convspinner'):
100
  if not executed:
101
  ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
102
  executed = True
 
132
  with gan:
133
  st.write('Próximamente')
134
  with vit:
135
+
136
  col_a, col_b = st.columns(2)
137
 
138
  with col_a:
 
141
  uploaded_file = st.file_uploader(key = 'ViT_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
142
  if st.button(key = 'ViT_button', label ='¿Hay un patacón en la imagen?'):
143
  if uploaded_file is not None:
144
+ with st.spinner('Cargando predicción...', key = 'vitspinner')
145
  classifier = pipeline("image-classification", model="frncscp/patacoptimus-prime")
146
  img = preprocess(uploaded_file, module = 'pil')
147
  raw_img = img