Spaces:
Running
Running
Update pages/Entorno de Ejecución.py
Browse files- pages/Entorno de Ejecución.py +19 -18
pages/Entorno de Ejecución.py
CHANGED
@@ -20,6 +20,22 @@ st.sidebar.write("contact@patacotron.tech")
|
|
20 |
|
21 |
cnn, autoencoder, svm, iforest, gan, vit, zero_shot= st.tabs(["CNN", "Autoencoder", "OC-SVM", 'iForest', 'GAN', 'ViT', 'Zero-Shot'])
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
with cnn:
|
24 |
|
25 |
col_a, col_b, = st.columns(2)
|
@@ -62,23 +78,6 @@ with cnn:
|
|
62 |
threshold = st.slider('¿Cuál va a ser el límite donde se considere patacón? (el valor recomendado para Ultra-Patacotrón es 50%, para los demás, 75%-80%)', 0, 100, 50)
|
63 |
|
64 |
selected_models = []
|
65 |
-
|
66 |
-
def predict(model_list, weights, img): #for non-supported formats
|
67 |
-
y_gorrito = 0
|
68 |
-
raw_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
69 |
-
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
|
70 |
-
for model, weight in zip(model_list, weights):
|
71 |
-
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight
|
72 |
-
return [y_gorrito / sum(weights), raw_img]
|
73 |
-
|
74 |
-
def preprocess(file_uploader, module = 'cv2'): #makes the uploaded image readable
|
75 |
-
img = np.frombuffer(uploaded_file.read(), np.uint8)
|
76 |
-
if module == 'cv2':
|
77 |
-
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
|
78 |
-
elif module == 'pil':
|
79 |
-
img = Image.frombuffer(data = uploaded_file.read())
|
80 |
-
#img = Image.open(io.BytesIO(file_uploader.read()))
|
81 |
-
return img
|
82 |
|
83 |
# Set the image dimensions
|
84 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|
@@ -146,9 +145,11 @@ with vit:
|
|
146 |
img = preprocess(uploaded_file, module = 'pil')
|
147 |
raw_img = img
|
148 |
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
|
149 |
-
classifier(img)
|
150 |
else:
|
151 |
st.write("Asegúrate de haber subido correctamente la imagen.")
|
|
|
|
|
|
|
152 |
|
153 |
with zero_shot:
|
154 |
st.write('Próximamente')
|
|
|
20 |
|
21 |
cnn, autoencoder, svm, iforest, gan, vit, zero_shot= st.tabs(["CNN", "Autoencoder", "OC-SVM", 'iForest', 'GAN', 'ViT', 'Zero-Shot'])
|
22 |
|
23 |
+
def predict(model_list, weights, img): #for non-supported formats
|
24 |
+
y_gorrito = 0
|
25 |
+
raw_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
26 |
+
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
|
27 |
+
for model, weight in zip(model_list, weights):
|
28 |
+
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight
|
29 |
+
return [y_gorrito / sum(weights), raw_img]
|
30 |
+
|
31 |
+
def preprocess(file_uploader, module = 'cv2'): #makes the uploaded image readable
|
32 |
+
img = np.frombuffer(uploaded_file.read(), np.uint8)
|
33 |
+
if module == 'cv2':
|
34 |
+
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
|
35 |
+
elif module == 'pil':
|
36 |
+
img = Image.open(file_uploader.read())
|
37 |
+
return img
|
38 |
+
|
39 |
with cnn:
|
40 |
|
41 |
col_a, col_b, = st.columns(2)
|
|
|
78 |
threshold = st.slider('¿Cuál va a ser el límite donde se considere patacón? (el valor recomendado para Ultra-Patacotrón es 50%, para los demás, 75%-80%)', 0, 100, 50)
|
79 |
|
80 |
selected_models = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Set the image dimensions
|
83 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|
|
|
145 |
img = preprocess(uploaded_file, module = 'pil')
|
146 |
raw_img = img
|
147 |
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
|
|
|
148 |
else:
|
149 |
st.write("Asegúrate de haber subido correctamente la imagen.")
|
150 |
+
with col_b:
|
151 |
+
st.write(classifier(img))
|
152 |
+
st.image(raw_img)
|
153 |
|
154 |
with zero_shot:
|
155 |
st.write('Próximamente')
|