frncscp commited on
Commit
9b05108
1 Parent(s): 7e0e920

Update pages/Entorno de Ejecución.py

Browse files
Files changed (1) hide show
  1. pages/Entorno de Ejecución.py +12 -11
pages/Entorno de Ejecución.py CHANGED
@@ -1,7 +1,7 @@
1
  import streamlit as st
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
- from transformers import AutoConfig, AutoModel, pipeline, AutoProcessor, AutoModelForZeroShotImageClassification
5
  from PIL import Image
6
  import os
7
  import cv2
@@ -112,7 +112,7 @@ with cnn:
112
 
113
  with col_b:
114
 
115
- uploaded_file = st.file_uploader(key = 'convnet_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
116
 
117
  if st.button(key = 'convnet_button', label ='¿Hay un patacón en la imagen?'):
118
  if len(model_choice) < 1:
@@ -184,14 +184,14 @@ with vit:
184
  #img = preprocess(uploaded_file, module = 'pil')
185
 
186
 
187
- def vit_ensemble(classifier_list, img):
188
- y_gorrito = 0
189
- for classifier in classifier_list:
190
- classifier = classifier(img)
191
- for clase in classifier:
192
- if clase['label'] == 'Patacon-True':
193
- y_gorrito += clase["score"]
194
- return y_gorrito / len(classifier_list)
195
 
196
 
197
  y_gorrito = 0
@@ -200,7 +200,8 @@ with vit:
200
  api_result = query(uploaded_file.read(), model_dict[model])
201
  y_gorrito += api_result[1]["score"]
202
  y_gorrito /= len(model_choice)
203
-
 
204
  #classifier = classifier(img)
205
 
206
  #for clase in classifier:
 
1
  import streamlit as st
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
+ from transformers import AutoConfig, AutoModel, pipeline#, AutoProcessor, AutoModelForZeroShotImageClassification
5
  from PIL import Image
6
  import os
7
  import cv2
 
112
 
113
  with col_b:
114
 
115
+ uploaded_file = st.file_uploader(key = 'conv_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
116
 
117
  if st.button(key = 'convnet_button', label ='¿Hay un patacón en la imagen?'):
118
  if len(model_choice) < 1:
 
184
  #img = preprocess(uploaded_file, module = 'pil')
185
 
186
 
187
+ #def vit_ensemble(classifier_list, img):
188
+ # y_gorrito = 0
189
+ # for classifier in classifier_list:
190
+ # classifier = classifier(img)
191
+ # for clase in classifier:
192
+ # if clase['label'] == 'Patacon-True':
193
+ # y_gorrito += clase["score"]
194
+ # return y_gorrito / len(classifier_list)
195
 
196
 
197
  y_gorrito = 0
 
200
  api_result = query(uploaded_file.read(), model_dict[model])
201
  y_gorrito += api_result[1]["score"]
202
  y_gorrito /= len(model_choice)
203
+
204
+ st.write("y gorrito calculado")
205
  #classifier = classifier(img)
206
 
207
  #for clase in classifier: