frncscp commited on
Commit
b6305a8
1 Parent(s): a5861b6

Update pages/Entorno de Ejecución.py

Browse files
Files changed (1) hide show
  1. pages/Entorno de Ejecución.py +17 -18
pages/Entorno de Ejecución.py CHANGED
@@ -1,7 +1,7 @@
1
  import streamlit as st
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
- from transformers import pipeline
5
  from PIL import Image
6
  import os
7
  import cv2
@@ -131,6 +131,14 @@ with vit:
131
  with col_a:
132
  st.title('Visual Transformers')
133
  st.caption('One class is all you need!')
 
 
 
 
 
 
 
 
134
  uploaded_file = st.file_uploader(key = 'ViT_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
135
  flag = False
136
  threshold = st.slider('¿Cuál va a ser el límite desde donde se considere patacón? (se recomienda por encima del 80%)', 0, 100, 80, key = 'threshold_vit')
@@ -138,9 +146,11 @@ with vit:
138
  with col_b:
139
 
140
  if st.button(key = 'ViT_button', label ='¿Hay un patacón en la imagen?'):
141
- if uploaded_file is not None:
 
 
142
  with st.spinner('Cargando predicción...'):
143
- classifier = pipeline("image-classification", model="frncscp/patacoptimus-prime")
144
  img = preprocess(uploaded_file, module = 'pil')
145
 
146
  classifier = classifier(img)
@@ -165,24 +175,15 @@ with vit:
165
  with zero_shot:
166
 
167
  col_a, col_b = st.columns(2)
168
-
169
  with col_a:
170
 
171
  st.title("Clasificación Zero-Shot")
172
- st.caption("Usando Clip de OpenAI y Convnext de Facebook")
173
 
174
  labels_for_classification = ["A yellow deep fried smashed plantain",
175
  "Fried food",
176
  "Anything"]
177
-
178
-
179
- model_dict = {
180
- 'Clip (openai/clip-vit-large-patch14-336)' : 'frncscp/patacoptimus-prime',
181
- 'Convnext (facebook/convnext-large-224)' : 'frncscp/pataconxt'
182
- }
183
-
184
- model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys(), key = 'zs_multiselect')
185
-
186
 
187
  uploaded_file = st.file_uploader(key = 'ZS_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
188
  threshold = st.slider('¿Cuál va a ser el límite desde donde se considere patacón? (se recomienda por encima del 33.33%)', 0, 100, 34, key = 'threshold_ZS')
@@ -191,12 +192,10 @@ with zero_shot:
191
 
192
 
193
  if st.button(key = 'ZS_button', label ='¿Hay un patacón en la imagen?'):
194
- if len(model_choice) != 1:
195
- print('Recuerda seleccionar un solo modelo de clasificación')
196
- elif uploaded_file is not None:
197
  if not zsloaded:
198
  with st.spinner("Cargando modelo de clasificación..."):
199
- classifier = pipeline("zero-shot-image-classification", model = model_dict[model_choice[0]])
200
  zsloaded = True
201
  with st.spinner('Cargando predicción...'):
202
  img = preprocess(uploaded_file, module = 'pil')
 
1
  import streamlit as st
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
+ from transformers import AutoConfig, AutoModel, pipeline
5
  from PIL import Image
6
  import os
7
  import cv2
 
131
  with col_a:
132
  st.title('Visual Transformers')
133
  st.caption('One class is all you need!')
134
+
135
+ model_dict = {
136
+ 'google/vit-base-patch16-224-in21k' : 'frncscp/patacoptimus-prime',
137
+ 'facebook/convnext-large-224' : 'frncscp/pataconxt'
138
+ }
139
+
140
+ model_choice = st.multiselect("Seleccione un modelo de clasificación", model_dict.keys(), key = 'ViT_multiselect')
141
+
142
  uploaded_file = st.file_uploader(key = 'ViT_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
143
  flag = False
144
  threshold = st.slider('¿Cuál va a ser el límite desde donde se considere patacón? (se recomienda por encima del 80%)', 0, 100, 80, key = 'threshold_vit')
 
146
  with col_b:
147
 
148
  if st.button(key = 'ViT_button', label ='¿Hay un patacón en la imagen?'):
149
+ if len(model_choice) != 1:
150
+ print('Recuerda seleccionar un solo modelo de clasificación')
151
+ elif uploaded_file is not None:
152
  with st.spinner('Cargando predicción...'):
153
+ classifier = pipeline("image-classification", model= model_dict[model_choice[0]])
154
  img = preprocess(uploaded_file, module = 'pil')
155
 
156
  classifier = classifier(img)
 
175
  with zero_shot:
176
 
177
  col_a, col_b = st.columns(2)
178
+
179
  with col_a:
180
 
181
  st.title("Clasificación Zero-Shot")
182
+ st.caption("Usando Clip de OpenAI")
183
 
184
  labels_for_classification = ["A yellow deep fried smashed plantain",
185
  "Fried food",
186
  "Anything"]
 
 
 
 
 
 
 
 
 
187
 
188
  uploaded_file = st.file_uploader(key = 'ZS_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
189
  threshold = st.slider('¿Cuál va a ser el límite desde donde se considere patacón? (se recomienda por encima del 33.33%)', 0, 100, 34, key = 'threshold_ZS')
 
192
 
193
 
194
  if st.button(key = 'ZS_button', label ='¿Hay un patacón en la imagen?'):
195
+ if uploaded_file is not None:
 
 
196
  if not zsloaded:
197
  with st.spinner("Cargando modelo de clasificación..."):
198
+ classifier = pipeline("zero-shot-image-classification", model = 'openai/clip-vit-large-patch14-336')
199
  zsloaded = True
200
  with st.spinner('Cargando predicción...'):
201
  img = preprocess(uploaded_file, module = 'pil')