Spaces:
Running
Running
Update pages/Entorno de Ejecución.py
Browse files- pages/Entorno de Ejecución.py +11 -10
pages/Entorno de Ejecución.py
CHANGED
@@ -31,11 +31,6 @@ with col_a:
|
|
31 |
|
32 |
threshold = .8
|
33 |
|
34 |
-
ultra_button = st.checkbox('Ultra-Patacotrón (mejores resultados)')
|
35 |
-
ultra_flag = False
|
36 |
-
if ultra_button:
|
37 |
-
ultra_flag = True
|
38 |
-
|
39 |
models = os.listdir(DIR)
|
40 |
|
41 |
model_dict = dict()
|
@@ -44,13 +39,18 @@ with col_a:
|
|
44 |
model_name = str(model.split('.h5')[0])
|
45 |
model_dir = os.path.join(DIR, model)
|
46 |
model_dict[model_name] = model_dir
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Create a dropdown menu to select the model
|
51 |
model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys())
|
52 |
|
53 |
-
selected_models = []
|
54 |
|
55 |
def ensemble_model(model_list, img):
|
56 |
y_gorrito = np.zeros((1, 1))
|
@@ -67,8 +67,9 @@ with col_a:
|
|
67 |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)
|
68 |
return y_gorrito / len(model_list)
|
69 |
|
70 |
-
for model in model_choice:
|
71 |
-
selected_models.append(model)
|
|
|
72 |
|
73 |
# Set the image dimensions
|
74 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|
|
|
31 |
|
32 |
threshold = .8
|
33 |
|
|
|
|
|
|
|
|
|
|
|
34 |
models = os.listdir(DIR)
|
35 |
|
36 |
model_dict = dict()
|
|
|
39 |
model_name = str(model.split('.h5')[0])
|
40 |
model_dir = os.path.join(DIR, model)
|
41 |
model_dict[model_name] = model_dir
|
42 |
+
|
43 |
+
ultraversions = ['ptctrn_v1.4', 'ptctrn_v1.5', 'ptctrn_v1.6', 'ptctrn_v1.12']
|
44 |
+
ultra_button = st.checkbox('Ultra-Patacotrón (mejores resultados)')
|
45 |
+
ultra_flag = False
|
46 |
+
if ultra_button:
|
47 |
+
ultra_flag = True
|
48 |
+
ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
|
49 |
|
50 |
# Create a dropdown menu to select the model
|
51 |
model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys())
|
52 |
|
53 |
+
#selected_models = []
|
54 |
|
55 |
def ensemble_model(model_list, img):
|
56 |
y_gorrito = np.zeros((1, 1))
|
|
|
67 |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)
|
68 |
return y_gorrito / len(model_list)
|
69 |
|
70 |
+
#for model in model_choice:
|
71 |
+
#selected_models.append(model)
|
72 |
+
selected_models = [load_model(model) for model in model_choice]
|
73 |
|
74 |
# Set the image dimensions
|
75 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|