Spaces:
Running
Running
Update pages/Entorno de Ejecución.py
Browse files- pages/Entorno de Ejecución.py +19 -13
pages/Entorno de Ejecución.py
CHANGED
@@ -54,20 +54,25 @@ with cnn:
|
|
54 |
selected_models = []
|
55 |
|
56 |
@tf.function
|
57 |
-
def
|
58 |
y_gorrito = 0
|
59 |
-
|
60 |
-
|
61 |
for model in model_list:
|
62 |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)
|
63 |
return [y_gorrito / len(model_list), raw_img]
|
64 |
|
65 |
-
def
|
66 |
-
|
67 |
-
img = cv2.
|
68 |
-
|
69 |
-
|
70 |
-
return
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Set the image dimensions
|
73 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|
@@ -83,15 +88,16 @@ with cnn:
|
|
83 |
st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.')
|
84 |
|
85 |
elif uploaded_file is not None:
|
|
|
86 |
if ultra_flag:
|
87 |
with st.spinner('Cargando ultra-predicción...'):
|
88 |
if not executed:
|
89 |
ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
|
90 |
executed = True
|
91 |
try:
|
92 |
-
y_gorrito, raw_img =
|
93 |
except:
|
94 |
-
y_gorrito, raw_img =
|
95 |
|
96 |
|
97 |
# Pass the image to the model and get the prediction
|
@@ -105,9 +111,9 @@ with cnn:
|
|
105 |
with st.spinner('Cargando predicción...'):
|
106 |
selected_models = [load_model(model_dict[model]) for model in model_choice if model not in selected_models]
|
107 |
try:
|
108 |
-
y_gorrito, raw_img =
|
109 |
except:
|
110 |
-
y_gorrito, raw_img =
|
111 |
|
112 |
if round(float(y_gorrito*100)) >= threshold:
|
113 |
st.success("¡Patacón Detectado!")
|
|
|
54 |
selected_models = []
|
55 |
|
56 |
@tf.function
|
57 |
+
def tf_predict(model_list, img): #faster, but for few formats
|
58 |
y_gorrito = 0
|
59 |
+
raw_img = tf.image.decode_image(img, channels=3)
|
60 |
+
img = tf.image.resize(raw_img,(IMAGE_WIDTH, IMAGE_HEIGHT))
|
61 |
for model in model_list:
|
62 |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)
|
63 |
return [y_gorrito / len(model_list), raw_img]
|
64 |
|
65 |
+
def basic_predict(model_list, img): #for non-supported formats
|
66 |
+
raw_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
67 |
+
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
|
68 |
+
for model in model_list:
|
69 |
+
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)
|
70 |
+
return [y_gorrito / len(model_list), raw_img]
|
71 |
+
|
72 |
+
def preprocess(file_uploader): #makes the uploaded image readable
|
73 |
+
img = np.frombuffer(uploaded_file.read(), np.uint8)
|
74 |
+
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
|
75 |
+
return img
|
76 |
|
77 |
# Set the image dimensions
|
78 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|
|
|
88 |
st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.')
|
89 |
|
90 |
elif uploaded_file is not None:
|
91 |
+
img = preprocess(uploaded_file)
|
92 |
if ultra_flag:
|
93 |
with st.spinner('Cargando ultra-predicción...'):
|
94 |
if not executed:
|
95 |
ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
|
96 |
executed = True
|
97 |
try:
|
98 |
+
y_gorrito, raw_img = tf_predict(ultraptctrn, img)
|
99 |
except:
|
100 |
+
y_gorrito, raw_img = basic_predict(ultraptctrn, img)
|
101 |
|
102 |
|
103 |
# Pass the image to the model and get the prediction
|
|
|
111 |
with st.spinner('Cargando predicción...'):
|
112 |
selected_models = [load_model(model_dict[model]) for model in model_choice if model not in selected_models]
|
113 |
try:
|
114 |
+
y_gorrito, raw_img = tf_predict(selected_models, img)
|
115 |
except:
|
116 |
+
y_gorrito, raw_img = basic_predict(selected_models, img)
|
117 |
|
118 |
if round(float(y_gorrito*100)) >= threshold:
|
119 |
st.success("¡Patacón Detectado!")
|