Spaces:
Running
Running
Update pages/Entorno de Ejecución.py
Browse files
pages/Entorno de Ejecución.py
CHANGED
@@ -45,7 +45,6 @@ with col_a:
|
|
45 |
ultra_flag = False
|
46 |
if ultra_button:
|
47 |
ultra_flag = True
|
48 |
-
|
49 |
|
50 |
# Create a dropdown menu to select the model
|
51 |
model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys())
|
@@ -67,36 +66,27 @@ with col_a:
|
|
67 |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)
|
68 |
return y_gorrito / len(model_list)
|
69 |
|
70 |
-
#for model in model_choice:
|
71 |
-
#selected_models.append(model)
|
72 |
-
|
73 |
-
|
74 |
# Set the image dimensions
|
75 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|
76 |
|
77 |
uploaded_file = st.file_uploader(label = '',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
|
78 |
-
|
|
|
79 |
with col_b:
|
80 |
if st.button('¿Hay un patacón en la imagen?'):
|
81 |
if len(selected_models) > 0 and ultra_flag:
|
82 |
st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.')
|
83 |
elif uploaded_file is not None:
|
84 |
-
|
85 |
-
#img = tf.io.read_file(uploaded_file)
|
86 |
raw_img = tf.image.decode_image(uploaded_file.read(), channels=3)
|
87 |
img = tf.image.resize(raw_img,(IMAGE_WIDTH, IMAGE_HEIGHT))
|
88 |
-
|
89 |
-
#img = np.frombuffer(uploaded_file.read(), np.uint8)
|
90 |
-
#img = cv2.imdecode(img, cv2.IMREAD_COLOR)
|
91 |
-
#raw_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
92 |
-
#img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
|
93 |
-
|
94 |
-
# Convert the image to RGB and preprocess it for the model
|
95 |
-
#img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
96 |
# Pass the image to the model and get the prediction
|
97 |
if ultra_flag:
|
98 |
with st.spinner('Cargando ultra-predicción...'):
|
99 |
-
|
|
|
|
|
100 |
y_gorrito = predict(ultraptctrn, img)
|
101 |
else:
|
102 |
with st.spinner('Cargando predicción...'):
|
|
|
45 |
ultra_flag = False
|
46 |
if ultra_button:
|
47 |
ultra_flag = True
|
|
|
48 |
|
49 |
# Create a dropdown menu to select the model
|
50 |
model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys())
|
|
|
66 |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)
|
67 |
return y_gorrito / len(model_list)
|
68 |
|
|
|
|
|
|
|
|
|
69 |
# Set the image dimensions
|
70 |
IMAGE_WIDTH = IMAGE_HEIGHT = 224
|
71 |
|
72 |
uploaded_file = st.file_uploader(label = '',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
|
73 |
+
executed = False
|
74 |
+
|
75 |
with col_b:
|
76 |
if st.button('¿Hay un patacón en la imagen?'):
|
77 |
if len(selected_models) > 0 and ultra_flag:
|
78 |
st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.')
|
79 |
elif uploaded_file is not None:
|
80 |
+
|
|
|
81 |
raw_img = tf.image.decode_image(uploaded_file.read(), channels=3)
|
82 |
img = tf.image.resize(raw_img,(IMAGE_WIDTH, IMAGE_HEIGHT))
|
83 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
# Pass the image to the model and get the prediction
|
85 |
if ultra_flag:
|
86 |
with st.spinner('Cargando ultra-predicción...'):
|
87 |
+
if not executed:
|
88 |
+
ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
|
89 |
+
executed = True
|
90 |
y_gorrito = predict(ultraptctrn, img)
|
91 |
else:
|
92 |
with st.spinner('Cargando predicción...'):
|