Spaces:
Running
Running
Update pages/Entorno de Ejecución.py
Browse files
pages/Entorno de Ejecución.py
CHANGED
@@ -37,6 +37,11 @@ def preprocess(file_uploader, module = 'cv2'): #makes the uploaded image readabl
|
|
37 |
img = Image.open(file_uploader)
|
38 |
return img
|
39 |
|
|
|
|
|
|
|
|
|
|
|
40 |
@st.experimental_singleton
|
41 |
def load_clip():
|
42 |
classifier = pipeline("zero-shot-image-classification", model = 'openai/clip-vit-large-patch14-336')
|
@@ -206,11 +211,9 @@ with zero_shot:
|
|
206 |
zs_classifier = classifier(img,
|
207 |
candidate_labels = labels_for_classification)
|
208 |
|
209 |
-
|
210 |
-
if clase['label'] == 'A yellow deep fried smashed plantain':
|
211 |
-
y_gorrito = clase["score"]
|
212 |
|
213 |
-
if
|
214 |
st.success("¡Patacón Detectado!")
|
215 |
else:
|
216 |
st.error("No se considera que haya un patacón en la imagen")
|
|
|
37 |
img = Image.open(file_uploader)
|
38 |
return img
|
39 |
|
40 |
+
def multiclass_prediction(classifier): #made for hf zero-shot pipeline results
|
41 |
+
score = (max([classifier[i]['score'] for i in range(len(classifier))]))
|
42 |
+
labels = [predict['label'] for predict in classifier if score == predict['score']]
|
43 |
+
return (labels[0] if len(labels) == 1 else labels, score)
|
44 |
+
|
45 |
@st.experimental_singleton
|
46 |
def load_clip():
|
47 |
classifier = pipeline("zero-shot-image-classification", model = 'openai/clip-vit-large-patch14-336')
|
|
|
211 |
zs_classifier = classifier(img,
|
212 |
candidate_labels = labels_for_classification)
|
213 |
|
214 |
+
label, y_gorrito = multiclass_prediction(zs_classifier)
|
|
|
|
|
215 |
|
216 |
+
if label == "A yellow deep fried smashed plantain":
|
217 |
st.success("¡Patacón Detectado!")
|
218 |
else:
|
219 |
st.error("No se considera que haya un patacón en la imagen")
|