import streamlit as st import tensorflow as tf from tensorflow.keras.models import load_model import os st.set_page_config( page_title = 'Patacotrón', initial_sidebar_state = 'collapsed', menu_items = { "About" : 'Proyecto ideado para la investigación de "Clasificación de imágenes de una sola clase con algortimos de Inteligencia Artificial".', "Report a Bug" : 'https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link' } ) with st.sidebar: st.write("contact@patacotron.tech") st.title("Entorno de ejecución") cnn, autoencoder, svm, iforest, gan, docc = st.tabs(["CNN", "Autoencoder", "OC-SVM", 'iForest', 'GAN', 'DOCC']) with cnn: col_a, col_b, = st.columns(2) with col_a: st.title("Redes neuronales convolucionales") st.caption("Los modelos no están en orden de eficacia, sino en orden de creación.") # Get the absolute path to the current directory current_dir = os.path.abspath(os.path.dirname(__file__)) # Get the absolute path to the parent directory of the current directory root_dir = os.path.abspath(os.path.join(current_dir, os.pardir)) # Join the path to the models folder DIR = os.path.join(root_dir, "models") threshold = .75 models = os.listdir(DIR) model_dict = dict() for model in models: model_name = model.split(DIR) model_name = str(model.split('.h5')[0]) model_dir = os.path.join(DIR, model) model_dict[model_name] = model_dir ultraversions = ['ptctrn_v1.4', 'ptctrn_v1.5', 'ptctrn_v1.6', 'ptctrn_v1.12'] ultra_button = st.checkbox('Ultra-Patacotrón (mejores resultados)') ultra_flag = False if ultra_button: ultra_flag = True # Create a dropdown menu to select the model model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys()) selected_models = [] @tf.function def predict(model_list, img): y_gorrito = 0 for model in model_list: y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32) return y_gorrito / len(model_list) # Set the image dimensions IMAGE_WIDTH = IMAGE_HEIGHT = 224 uploaded_file = st.file_uploader(label = '',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic']) executed = False with col_b: if st.button('¿Hay un patacón en la imagen?'): if len(selected_models) > 0 and ultra_flag: st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.') elif uploaded_file is not None: raw_img = tf.image.decode_image(uploaded_file.read(), channels=3) img = tf.image.resize(raw_img,(IMAGE_WIDTH, IMAGE_HEIGHT)) # Pass the image to the model and get the prediction if ultra_flag: with st.spinner('Cargando ultra-predicción...'): if not executed: ultraptctrn = [load_model(model_dict[model]) for model in ultraversions] executed = True y_gorrito = predict(ultraptctrn, img) else: with st.spinner('Cargando predicción...'): selected_models = [load_model(model_dict[model]) for model in model_choice if model not in selected_models] y_gorrito = predict(selected_models, img) if y_gorrito >= threshold: st.success("¡Patacón Detectado!") else: st.error("No se encontró rastro de patacón.") st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito), 2)*100}%') st.image(raw_img.numpy()) st.caption('Si los resultados no fueron los esperados, por favor, [haz click aquí](https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link)') else: st.write('Revisa haber seleccionado los modelos y la imagen correctamente.') with autoencoder: st.write('Próximamente') with svm: st.write('Próximamente') with iforest: st.write('Próximamente') with gan: st.write('Próximamente') with docc: st.write('Próximamente')