import streamlit as st import tensorflow as tf from tensorflow.keras.models import load_model import os import cv2 import numpy as np st.set_page_config( page_title = 'Patacotrón', layout = 'wide', menu_items = { "About" : 'Proyecto ideado para la investigación de "Clasificación de imágenes de una sola clase con algortimos de Inteligencia Artificial".', "Report a Bug" : 'https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link' } ) st.sidebar.write("contact@patacotron.tech") cnn, autoencoder, svm, iforest, gan, vit = st.tabs(["CNN", "Autoencoder", "OC-SVM", 'iForest', 'GAN', 'ViT']) with cnn: col_a, col_b, = st.columns(2) with col_a: st.title("Redes neuronales convolucionales") st.caption("Los modelos no están en orden de eficacia, sino en orden de creación.") current_dir = os.getcwd() root_dir = os.path.dirname(current_dir) # Join the path to the models folder DIR = os.path.join(current_dir, "models") models = os.listdir(DIR) model_dict = dict() for model in models: #preprocessing of strings so the name is readable in the multiselect bar model_name = model.split(DIR) model_name = str(model.split('.h5')[0]) model_dir = os.path.join(DIR, model) model_dict[model_name] = model_dir ultraversions = ['ptctrn_v1.4', 'ptctrn_v1.5', 'ptctrn_v1.6', 'ptctrn_v1.12'] ultra_button = st.checkbox('Ultra-Patacotrón (mejores resultados)') ultra_flag = False if ultra_button: ultra_flag = True weight_list = [1, 1.4, 1.1, 7] # Create a dropdown menu to select the model model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys()) weight_list = [] threshold = st.slider('¿Cuál va a ser el límite donde se considere patacón? (el valor recomendado para Ultra-Patacotrón es 60%, para los demás, 75%-80%)', 0, 100, 75) selected_models = [] @tf.function def tf_predict(model_list, weights, img): #faster, but for few formats y_gorrito = 0 raw_img = tf.image.decode_image(img, channels=3) img = tf.image.resize(raw_img,(IMAGE_WIDTH, IMAGE_HEIGHT)) for model, weight in zip(model_list, weights): y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight return [y_gorrito / sum(weights), raw_img.numpy()] def basic_predict(model_list, weights, img): #for non-supported formats y_gorrito = 0 raw_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT)) for model, weight in zip(model_list, weights): y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight return [y_gorrito / sum(weights), raw_img] def preprocess(file_uploader): #makes the uploaded image readable img = np.frombuffer(uploaded_file.read(), np.uint8) img = cv2.imdecode(img, cv2.IMREAD_COLOR) return img # Set the image dimensions IMAGE_WIDTH = IMAGE_HEIGHT = 224 executed = False with col_b: uploaded_file = st.file_uploader(label = '',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic']) if st.button('¿Hay un patacón en la imagen?'): if len(selected_models) > 0 and ultra_flag: st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.') elif uploaded_file is not None: img = preprocess(uploaded_file) if ultra_flag: with st.spinner('Cargando ultra-predicción...'): if not executed: ultraptctrn = [load_model(model_dict[model]) for model in ultraversions] executed = True final_weights = weight_list if len(weight_list) >= 1 else [1 for i in range(len(ultraptctrn))] try: y_gorrito, raw_img = tf_predict(ultraptctrn, final_weights, img) except: y_gorrito, raw_img = basic_predict(ultraptctrn, final_weights, img) else: with st.spinner('Cargando predicción...'): selected_models = [load_model(model_dict[model]) for model in model_choice if model not in selected_models] final_weights = weight_list if len(weight_list) >= 1 else [1 for i in range(len(selected_models))] try: y_gorrito, raw_img = tf_predict(selected_models, final_weights, img) except: y_gorrito, raw_img = basic_predict(selected_models, final_weights, img) if round(float(y_gorrito*100)) >= threshold: st.success("¡Patacón Detectado!") else: st.error("No se considera que haya un patacón en la imagen") st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito * 100), 2)}%') st.caption('Si los resultados no fueron los esperados, por favor, [haz click aquí](https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link)') st.image(raw_img) else: st.write('Revisa haber seleccionado los modelos y la imagen correctamente.') with autoencoder: st.write('Próximamente') with svm: st.write('Próximamente') with iforest: st.write('Próximamente') with gan: st.write('Próximamente') with vit: st.write('Próximamente')