s2s / app.py
frogcho123's picture
Update app.py
2920572
raw
history blame
1.32 kB
import gradio as gr
import os
import whisper
# Load the Whisper model
model = whisper.load_model("base")
# Function to process the uploaded audio file and perform transcription
def process_audio(upload):
# Save the uploaded audio file
file_path = "uploaded_audio.wav"
with open(file_path, "wb") as f:
f.write(upload.read())
# Load the audio file and perform preprocessing
audio = whisper.load_audio(file_path)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# Detect the spoken language
_, probs = model.detect_language(mel)
detected_language = max(probs, key=probs.get)
# Perform transcription using Whisper ASR
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
transcription = result.text
# Delete the temporary audio file
os.remove(file_path)
return transcription
# Create a file input component for uploading the audio file
audio_input = gr.inputs.File(label="Upload Audio")
# Create a text output component for displaying the transcription
text_output = gr.outputs.Textbox(label="Transcription")
# Create a Gradio interface
gr.Interface(fn=process_audio, inputs=audio_input, outputs=text_output, title="Audio Transcription").launch()