Spaces:
Build error
Build error
frogcho123
commited on
Commit
•
b3ba25a
1
Parent(s):
2920572
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import whisper
|
|
|
4 |
|
5 |
# Load the Whisper model
|
6 |
model = whisper.load_model("base")
|
@@ -8,34 +9,41 @@ model = whisper.load_model("base")
|
|
8 |
# Function to process the uploaded audio file and perform transcription
|
9 |
def process_audio(upload):
|
10 |
# Save the uploaded audio file
|
11 |
-
file_path = "uploaded_audio
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
15 |
# Load the audio file and perform preprocessing
|
16 |
-
audio = whisper.load_audio(
|
17 |
audio = whisper.pad_or_trim(audio)
|
18 |
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
19 |
-
|
20 |
# Detect the spoken language
|
21 |
_, probs = model.detect_language(mel)
|
22 |
detected_language = max(probs, key=probs.get)
|
23 |
-
|
24 |
# Perform transcription using Whisper ASR
|
25 |
options = whisper.DecodingOptions()
|
26 |
result = whisper.decode(model, mel, options)
|
27 |
transcription = result.text
|
28 |
-
|
29 |
-
# Delete the temporary audio
|
30 |
-
os.remove(
|
31 |
-
|
|
|
32 |
return transcription
|
33 |
|
34 |
# Create a file input component for uploading the audio file
|
35 |
-
audio_input = gr.inputs.File(label="Upload Audio")
|
36 |
|
37 |
# Create a text output component for displaying the transcription
|
38 |
text_output = gr.outputs.Textbox(label="Transcription")
|
39 |
|
40 |
# Create a Gradio interface
|
41 |
gr.Interface(fn=process_audio, inputs=audio_input, outputs=text_output, title="Audio Transcription").launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import whisper
|
4 |
+
from pydub import AudioSegment
|
5 |
|
6 |
# Load the Whisper model
|
7 |
model = whisper.load_model("base")
|
|
|
9 |
# Function to process the uploaded audio file and perform transcription
|
10 |
def process_audio(upload):
|
11 |
# Save the uploaded audio file
|
12 |
+
file_path = "uploaded_audio"
|
13 |
+
upload_path = f"{file_path}.mp3"
|
14 |
+
upload.save(upload_path)
|
15 |
+
|
16 |
+
# Convert the audio file to WAV format
|
17 |
+
wav_path = f"{file_path}.wav"
|
18 |
+
audio = AudioSegment.from_file(upload_path)
|
19 |
+
audio.export(wav_path, format="wav")
|
20 |
+
|
21 |
# Load the audio file and perform preprocessing
|
22 |
+
audio = whisper.load_audio(wav_path)
|
23 |
audio = whisper.pad_or_trim(audio)
|
24 |
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
25 |
+
|
26 |
# Detect the spoken language
|
27 |
_, probs = model.detect_language(mel)
|
28 |
detected_language = max(probs, key=probs.get)
|
29 |
+
|
30 |
# Perform transcription using Whisper ASR
|
31 |
options = whisper.DecodingOptions()
|
32 |
result = whisper.decode(model, mel, options)
|
33 |
transcription = result.text
|
34 |
+
|
35 |
+
# Delete the temporary audio files
|
36 |
+
os.remove(upload_path)
|
37 |
+
os.remove(wav_path)
|
38 |
+
|
39 |
return transcription
|
40 |
|
41 |
# Create a file input component for uploading the audio file
|
42 |
+
audio_input = gr.inputs.File(label="Upload Audio", accept=".wav, .mp3")
|
43 |
|
44 |
# Create a text output component for displaying the transcription
|
45 |
text_output = gr.outputs.Textbox(label="Transcription")
|
46 |
|
47 |
# Create a Gradio interface
|
48 |
gr.Interface(fn=process_audio, inputs=audio_input, outputs=text_output, title="Audio Transcription").launch()
|
49 |
+
|