Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import whisper | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from gtts import gTTS | |
import sentencepiece | |
def translate_voice(file, target_lang): | |
model = whisper.load_model("base").float() | |
audio = whisper.load_audio(file.name) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(model.device).float() | |
_, probs = model.detect_language(mel) | |
options = whisper.DecodingOptions(fp16 = False) | |
result = whisper.decode(model, mel, options) | |
text = result.text | |
lang = max(probs, key=probs.get) | |
tokenizer = AutoTokenizer.from_pretrained("alirezamsh/small100") | |
model = AutoModelForSeq2SeqLM.from_pretrained("alirezamsh/small100") | |
tokenizer.src_lang = target_lang | |
encoded_bg = tokenizer(text, return_tensors="pt") | |
generated_tokens = model.generate(**encoded_bg) | |
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] | |
tts = gTTS(text=translated_text, lang=target_lang) | |
filename = "to_speech.mp3" | |
tts.save(filename) | |
return filename, text, translated_text, target_lang | |
iface = gr.Interface( | |
fn=translate_voice, | |
inputs=[ | |
gr.inputs.File(label="Your Audio"), | |
gr.inputs.Dropdown(choices=['en', 'ru', 'de', 'fr', 'bg'], label="Target Language") | |
], | |
outputs=[ | |
gr.outputs.Audio(type="filepath", label="Translated Audio"), | |
gr.outputs.Textbox(label="Original Text"), | |
gr.outputs.Textbox(label="Translated Text"), | |
gr.outputs.Textbox(label="Target Language"), | |
] | |
) | |
iface.launch() | |